
Chapter 1
The Software Heritage Open Science Ecosystem

Roberto Di Cosmo and Stefano Zacchiroli

Abstract
Software Heritage [5] is the largest public archive of software source code and

associated development history, as captured by modern version control systems. As
of February 2023 it has archived more than 12 billion unique source code files and
2 billion commits, coming from more than 180 million collaborative development
projects. In this chapter we describe the Software Heritage ecosystem, focusing on
research and open science use cases.

On the one hand Software Heritage supports empirical research on software by
materialising in a single Merkle direct acyclic graph the development history of
public code [19]. This giant graph of source code artifacts (files, directories, and
commits) can be used—and has been used—to study repository forks [39], open
source contributors [51, 52, 43], vulnerability propagation, software provenance
tracking [44], source code indexing, and more.

On the other hand Software Heritage ensures availability and guarantees integrity
of the source code of software artifacts used in any field that relies on software to
conduct experiments, contributing to making research reproducible. The source code
used in scientific experiments can be archived—e.g., via integration with open access
repositories [15]—referenced using persistent identifiers [16] that allow downstream
integrity checks, and linked to/from other scholarly digital artifacts [14].
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1.1 The Software Heritage Archive

Software Heritage [19, 5] is a non-profit initiative started by Inria in partnership with
UNESCO to build a long-term universal archive specifically designed for software
source code, capable of storing source code files and directories, together with their
full development histories.

Software Heritage’s mission is to collect, preserve, and make easily accessible
the source code of all publicly available software, addressing the needs of a plurality
of stakeholders, ranging from cultural heritage to public administrations and from
research to industry.

The key principles that underpin this initiative are described in detail in two
articles written for a broader audience in the early years of the project [19, 5]. One
of these principles was to avoid any a priori selection of the contents of the archive,
to avoid the risk of missing relevant source code, whose value will only become
apparent later on. Hence one of the strategies enacted for collecting source code to
archive is the large-scale automated crawling of major software development forges
and distributions, as shown in Figure 1.1.

Git
loader

Mercurial
loader

Debian source
package loader

tar loader

.

.

.

Software Heritage Archive
Merkle DAG + blob storage

Loading
& deduplication

dsc

dsc

hg

hg

hg

git
git

git git

svn

svn

svn

tar

zip

software
origins

Package
repos

Forges
GitHub
lister

GitLab
lister

Debian
lister

PyPi
lister

.

.

.
Distros

...

Scheduling

Listing
(full/incremental)

Fig. 1.1: Software Heritage data flow: crawling (on the left) and archival (right)

As a consequence of this automated harvesting, there is no guarantee that the
content of the archive only contains quality source code, or only code that builds
properly: curation of the contents will need to happen at a later stage, via human or
automated processes that build a view of the archive for specific needs. It may also
happen that the archive ends up containing content that needs to be removed, and
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this required the creation of a process to handle take down requests following current
legal regulations.1

The sustainability plan is based on several pillars. The first one is the support of
Inria, a national research institution that is involved for the long term. A second one
is the fact that Software Heritage provides a common infrastructure catering to the
needs of a variety of stakeholders, ranging from industry to academia, from cultural
heritage to public administrations. As a consequence, funding comes from a diverse
group of sponsors, ranging from IT companies to public institutions. Finally, an
extra layer of archival security is provided by a network of independent international
mirrors that maintain each a full copy of the archive.2

We recall here a few key properties that set Software Heritage apart from other
scholarly infrastructures:

• Software Heritage proactively archives all software, making it possible to store
and reference any piece of publicly available software relevant to a research
result, independently from any specific field of endeavour, and even when the
author(s) did not take any step to have it archived [19, 5];

• Software Heritage stores source code with its development history in a uniform
data structure, a Merkle Directed Acyclic Graph (DAG) [33], that allows to
provide uniform, intrinsic identifiers for tens of billions archived software arti-
facts, independently of the version control system (VCS) or package distribution
technology used by software developers [17].

Relevance for software ecosystems. Software Heritage relates to software ecosys-
tems, according to the seminal definition of Messerschmitt et al. [34] in two main
ways. On the one hand, software products are associated to source code artifacts that
are versioned and stored in VCSs. For Free/Open Source Software (FOSS), and more
generally public code, those artifacts are distributed publicly and can be mined to
pursue various goals. Software Heritage collects and preserves observable artifacts
that originates from open source ecosystems, enabling others to access and exploit
them in the foreseeable future.

On the other hand, Software Heritage provides the means to foster the sharing of
even more of those artifacts in the specific case of open scientific practices—what we
refer to as the “open science ecosystem” in this chapter. Contrary to software-only
ecosystems, the open science ecosystem encompasses a variety of software and non-
software artifacts (e.g., data, publications); Software Heritage has contributed to this
ecosystem the missing piece of long-term archival and referencing of scientifically-
relevant software source code artifacts.

1 See https://www.softwareheritage.org/legal/content-policy/ for details.
2 More details can be found at https://www.softwareheritage.org/support/sponsors and
https://www.softwareheritage.org/mirrors.
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1.1.1 Data Model

Modern software development produces multiple kinds of source code artifacts
(e.g., source code files, directories, commits), which are usually stored and tracked
in version control systems, distributed as packages in various formats, or otherwise.

When designing a software source code archive that stores source code with its
version control history coming from a disparate set of platforms, there are different
design options available. One option is to keep a verbatim copy of all the harvested
content, which makes it easy to immediately reuse the package or version control
tool. However, this approach can result in storage explosion: as a consequence of
both social coding practices on collaborative development platforms and the liberal
licensing terms of open source software, those source code artifacts end up being
massively duplicated across code hosting and distribution platforms.

Choosing a data structure that minimizes duplication is better for long-term
preservation and the ability to identify easily code reuse and duplication.

This is the choice made by Software Heritage. Its data model is a Direct Acyclic
Graph (DAG) that leverages classical ideas from content addressable storage and
Merkle trees [33], that we recall briefly here.

Merkle DAG

origins

snapshots

releases

revisions

directories

contents

Fig. 1.2: Data model of the Software Heritage archive: a directed acyclic graph
(DAG) linking together deduplicated software artifacts shared across the entire body
of (archived) public code

As shown in Figure 1.2, the Software Heritage DAG is organized in five logical
layers, which we describe below from bottom to top.

Contents (or “blobs”) form the graph’s leaves, and contain the raw content of
source code files, not including their filenames (which are context-dependent and
stored only as part of directory entries).
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Directories are associative lists mapping names to directory entries and asso-
ciated metadata (e.g., permissions). Each entry can point to content objects (“file
entries”), revisions (“revision entries”, e.g., to represent git submodules or subversion
externals), or other directories (“directory entries”).

Revisions (or “commits”) are point-in-time representations of the entire source
tree of a development project. Each revision points to the root directory of the project
source tree, and a list of its parent revisions (if any).

Releases (or “tags”) are revisions that have been marked by developers as note-
worthy with a specific, usually mnemonic, name (e.g., a version number like “4.2”).
Each release points to a revision and might include additional metadata such as a
changelog message, digital signature, etc.

Snapshots are point-in-time captures of the full state of a project develop-
ment repository. While revisions capture the state of a single development line
(or “branch”), snapshots capture the state of all branches in a repository and al-
low to reconstruct the full state of a repository that has been deleted or modified
destructively (e.g., rewriting its history with tools like “git rebase”).

Origins represent the places where artifacts have been encountered in the wild
(e.g., a public Git repository) and link those places to snapshot nodes and associated
metadata (e.g., the timestamp at which crawling happened), allowing to start archive
traversals pointing into the Merkle DAG.

The Software Heritage archive is hence a giant graph containing nodes corre-
sponding to all these artifacts and links between them as graph edges.

What makes this DAG capable of deduplicating identical content is the fact that
each node is identified by a cryptographic hash that concisely represent its contents,
and that is used in the SWHID identifier detailed in the next section. For the blobs
that are the leafs of the graph, this identifier is just a hash of the blob itself, so
even if the same file content can be present in multiple projects, its identifier will
be the same, and it will be stored in the archive only once, like in classical content
addressable storage [41]. For internal nodes, the identifier is computed from the
aggregation of the identifiers of its children, following the construction originally
introduced by Ralph Merkle [33]: as a consequence, if a same directory, possibly
containing thousands of files, is duplicated across multiple project, its identifier will
stay the same, and it will be stored only once in the archive. The same goes for
revision, releases and snapshots.

In terms of size the archive grows steadily over time as new source code artifacts
get added to it, as shown in Figure 1.3. As of February 2023, the Software Heritage
archive contained over 14 billions unique source code files, harvested from more
than 210 million software origins.3

3 See https://archive.softwareheritage.org for these and other up-to-date statistics.
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Fig. 1.3: Evolution of the Software Heritage Archive over time (February 2023)

1.1.2 Software Heritage Persistent Identifiers (SWHIDs)

As part of the archival process, a Software Heritage Persistent Identifier (SWHID),
is computed for each source code artifact added to the archive and can be used later
to reference, lookup, and retrieve it from the archive. The general syntax of SWHIDs
is shown in Figure 1.4.4

Fig. 1.4: Schema of the Software Heritage identifiers (SWHID)

SWHIDs are URIs [48] with a simple syntax. Core SWHIDs start with the "swh"
URI scheme; the colon (:) is used as separator between the logical parts of identifiers;
the schema version (currently 1) is the current version of this identifier schema; then
follows the type of source code artifacts identified; and finally comes a hex-encoded

4 See https://docs.softwareheritage.org/devel/swh-model/

persistent-identifiers.html for the full specification of SWHIDs.
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(using lowercase ASCII characters) cryptographic signature of this object, computed
in a standard way, as detailed in [16, 17].

Core SWHIDs can then be complemented by qualifiers that carry contextual
extrinsic information about the referenced source code artifact:

origin: the software origin where an object has been found or observed in the wild,
as an URI;

visit: persistent identifier of a snapshot corresponding to a specific visit of a repos-
itory containing the designated object;

anchor: a designated node in the Merkle DAG relative to which a path to the object
is specified;

path: the absolute file path, from the root directory associated to the anchor node,
to the object;

lines: line number(s) of interest, usually pointing within a source code file.

The combination of core SWHIDs and qualifiers provides a powerful means of
referring in a research article all source code artefacts of interest.

By keeping all the development history in a single global Merkle DAG. Software
Heritage offers unique opportunities for massive analysis of the software development
landscape. By archiving and referencing all the publicly available source code, the
archive also constitutes the ideal place to preserve research software artifacts and
offers powerful mechanisms to enhance research articles with precise references to
relevant fragments of source code, and contributes an essential building block to the
software pillar of Open Science.

1.2 Large Open Datasets for Empirical Software Engineering

The availability of large amounts of source code that came with the growing adoption
of open source and collaborative development has attracted the interest of software
engineering researchers since the beginning of the 2000’s, and opened the way
to large-scale empirical software engineering studies and a dedicated conference,
Mining Software Repositories.

Several shared concerns emerged over time in this area, and we recall here some
of the ones that are relevant for the discussion in this chapter.

One issue is the significant overhead involved in the systematic extraction of
relevant data from the publicly available repositories and their analysis for testing
research hypotheses. Building a very large scale dataset containing massive amounts
of source code with its version control history is a complex undertaking and requires
significant resources, as shown in seminal work by Mockus in 2009 [35]. The lack of a
common infrastructure spawned a proliferation of ad hoc pipelines for collecting and
organising source code with its version control history, a duplication of efforts that
were subtracted to the time available to perform the intended research and hindered
their reusability. A few initiatives were born with the intention of improving this
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unsatisfactory state of affairs: Boa [20] provides selected datasets (the largest and
most recent one at the time of writing consists of about 8 million GitHub repositories
sampled in October 2019) and a dedicated domain specific language to perform
efficient queries on them, while World of Code [32] collects git repositories on a
large scale and mainains dedicated data structures that ease their analysis.

The complexity of addressing the variety of existing code hosting platforms and
version control systems resulted in focusing only on subsets of the most popular
ones, in particular the GitHub forge and the git version control system, which raises
another issue: the risk of introducing bias in the results. In empirical sciences,
selection bias [25] is the bias that originates from performing an experiment on a
non-representative subset of the entire population under study. It is a methodological
issue that can lead to threats to the external validity of experiments, i.e., incorrectly
concluding that the obtained results are valid for the entire population, whereas
they might only apply to the selected subset. In empirical software engineering a
common pattern that could result in selection bias is performing experiments on
software artifacts coming from a relatively small set of development projects. It can
be mitigated by ensuring that the project set is representative of the larger set of
projects of interest, but doing so could be challenging.

Finally, there is the issue of enabling reproducibility of large-scale experiments—
i.e., the ability to replicate the findings of a previous scientific experiment, by the
same or a different team of scientists, reusing varying amounts of the artifacts used
in the original experiment [30].5 Large-scale empirical experiments in software
engineering might easily require shipping hundreds of GiB up to a few TiB of source
code artifacts as part of replication packages, whereas current scientific platform for
data self archival usually cap at tens of GiB.6

The comprehensiveness of the Software Heritage archive, that makes available
the largest public corpus of source code artifacts in a single logical place, helps with
all these issues:

• reduces the opportunity cost of conducting large-scale experiments by offering
at regular intervals as open datasets full dumps of the archive content

• contributes to mitigate selection bias and the associated external validity threats
by providing a corpus that strives to be comprehensive for researchers conducting
empirical software engineering experiments targeting large project populations.

• the persistence offered by an independent digital archive, run by a non profit
open organisation, eases the process of ensuring the reproducibility of large-scale
experiments, avoiding the need to re-archive the same open source code artifacts
in multiple papers, a wasteful practice that should be avoided if possible. Using
Software Heritage it is enough to thoroughly document in replication packages

5 For the sake of conciseness we do not differentiate here between repeatability, reproducibility, and
replicability; we refer instead the interested reader to the ACM terminology available at https:
//www.acm.org/publications/policies/artifact-review-and-badging-current. To
varying degrees Software Heritage helps with all of them, specifically when it comes to mitigating
the risk of losing availability to source code artifacts.
6 For comparison: the total size of source code archived at Software Heritage is ≈1 PiB at the time
of writing.
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Table 1.1: Comparison of infrastructures for performing empirical software engi-
neering research

Criteria
Infrastructure SWH SWH graph Boa World of Code

on S3 (on premise)
host organisation non profit foundation research project research project

purpose archival & research

scope all platforms GitHub, SourceForce Git hosting

dataset open closed closed

access free on demand on demand

query language SQL Athena graph API custom DSL custom API

cost 5$/TB 10K$ setup free free

dataset update frequency 6 months ≈ yearly ≈ yearly

reproducibility named dataset named dataset named dataset
SWHID list

the SWHIDs (see Section 1.1.2) of all source code artifacts7 used in an empirical
experiment to enable other scientists to reproduce the experiments later on [14].

Table 1.1 summarises the above points, comparing with a few other infrastructures
designed specifically for software engineering studies.

In the rest of this section we briefly describe the datasets that Software Heritage
curates and maintains to the benefit of other researchers in the field of empirical
software engineering.

Before detailing the available datasets, we recall that building and maintaining
the Software Heritage infrastructure that is instrumental to build them is a multi-
million dollars undertaking. We are making significant efforts to reduce the burden
on the prospective users, by providing dumps at regular intervals that help with
reproducibility and making them directly available on public clouds like AWS. Re-
searchers can then either run their queries directly on the cloud, paying only the
compute time, or download them for exploiting them on their own infrastructure.

To give an idea of the associated costs for researchers, SQL queries on the
graph datasets described in 1.2.1.1 can be performed using Amazon Athena for
approximately 5$ per Terabyte scanned at the time of writing. For example, an SQL
query to get the 4 topmost commit verb stems from over 2 billion revisions scans

7 As it will become clear in Section 1.1.2, in most cases it will be sufficient to list the SWHIDs of
the releases or repository snapshots.
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approximately 100 Gigabytes of data, and provides the user with the answer in less
than a minute, for a total cost of approximately 50 cents, a minimal fraction of the
cost one would incur to set up an on premise solution.

When SQL queries are not enough (typically when a graph traversal is needed),
the cost of a cloud solution may quickly become significant, and it may become more
interesting to set up an on premise solution. The full compressed graph dataset can
be exploited using medium range server grade machines that are accessible for less
than 10 thousand dollars.

1.2.1 The Software Heritage Datasets

The entire content of the Software Heritage archive is publicly available to researchers
interested in conducting empirical experiments on it. At the simplest level, the
content of the archive can be browsed interactively using the Web user interface
at https://archive.softwareheritage.org/ and accessed programmatically
using the Web API documented at https://archive.softwareheritage.org/
api/. These access paths, however, are not really suitable for large-scale experiments
due to protocol overheads and rate limitations enforced to avoid depleting archive
resources. To address this, several curated datasets are regularly extracted from the
archive and made available to researchers in ways suitable for mass analysis.

1.2.1.1 The Software Heritage Graph Dataset

Consider the data model discussed in Section 1.1.1. The entire archive graph is
exported periodically as the Software Heritage Graph Dataset [40]. Note the word
“graph” in there, which characterises this particular dataset and denotes that only the
graph is included in the dataset, up to the content of its leave nodes, excluded (for
size reasons). This dataset is suitable for analysing source code metadata, including
commit information, file names, software provenance, code reuse, etc.; but not for
textual analyses of archived source code, as that is stored in graph leaves (see the
blob dataset below for how to analyse actual code).

The data model of the graph dataset is a relational representation of the archive
Merkle DAG, with one “table” for each type of node: blobs, directories, commits,
releases, and snapshots. Each table entry is associated with several attributes, such as
multiple checksums for blobs, file names and attributes for directories, commit mes-
sages and timestamps for commits, etc. The full schema is documented at https://
docs.softwareheritage.org/devel/swh-dataset/graph/schema.html.

In practical terms, the dataset is distributed as a set of Apache ORC files for
each table, suitable for loading into scale-out columnar-oriented data processing
frameworks such as Spark and Hadoop. The ORC files can be downloaded from
the public Amazon S3 bucket s3://softwareheritage/graph/. At the time of
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writing the most recent dataset export has timestamp 2022-12-07 so, for example,
the first ORC files of the commit table are:

1 $ aws s3 ls --no-sign-request

↪→ s3://softwareheritage/graph/2022-12-07/orc/revision/

2 2022-12-13 17:41:44 3099338621 revision-[..]-f9492019c788.orc

3 2022-12-13 17:32:42 4714929458 revision-[..]-42da526d2964.orc

4 2022-12-13 17:57:00 3095895911 revision-[..]-9c46b558269d.orc

5 [..]

The current version of the dataset contains metadata for 13 billion source code
files, 10 billion directories, 2.7 billion commits, 35 million releases and 200 million
VCS snapshots, coming from 189 M software origins. The total size of the dataset
is 11 TiB, which makes it unpractical for use on personal machines, as opposed to
research clusters. For that reason hosted versions of the dataset are also available on
Amazon Athena and Azure Databricks. The former can be queried using the Presto
distributed SQL engine without having to download the dataset locally. For example,
the following query will return the most common first word stems used in commit
messages across more than 2.7 billion commits in just a few seconds:

Listing 1.1: Simple SQL query to get the 4 topmost commit verb stems
1 SELECT count(*) as c,word FROM (

2 SELECT word_stem(lower(split_part(trim(from_utf8(message)), ’ ’, 1)))

↪→ as word

3 from revision WHERE length(message) < 1000000)

4 WHERE word != ’’

5 GROUP BY word ORDER BY c DESC LIMIT 4

For the curious reader the (unsurprising) results of the query look like this:

Count Word

294 369 196 updat
178 738 450 merg
152 441 261 add
113 924 516 fix

More complex queries and examples can be found in previous work [40]. For more
details about using the graph dataset we refer the reader to its technical documentation
at https://docs.softwareheritage.org/devel/swh-dataset/graph/.

In addition to the research highlights presented later in this chapter, the Software
Heritage graph dataset has been used as subject of study for the 2020 edition of the
MSR (Mining Software Repositories) mining challenge, where students and young
researchers in software repository mining have used it to solve the most interesting
mining problems they could think of. To facilitate their task “teaser” datasets —data
samples with exactly the same shape of the full dataset, but much smaller— have also
been produced and can be used by researchers to understand how the dataset works
before attacking its full scale. For example, the popular-3k-python teaser contains
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a subset of 2.197 popular repositories tagged as implemented in Python and being
popular according to various metrics (e.g., GitHub stars, PyPI download statistics,
etc.). The gitlab-all teaser corresponds to all public repositories on gitlab.com
(as of December 2020), an often neglected ecosystem of Git repositories, which is
interest to study to avoid (or compare against) GitHub-specific biases.

1.2.1.2 Accessing Source Code Files

All source code files archived by Software Heritage are spread across multiple copies
and also mirrored to the public Amazon S3 bucket s3://softwareheritage/
content/. From there, individual files can be retrieved, possibly massively and in
parallel, based on their SHA1 checksums. Starting from SWHIDs one can obtain
SHA1 checksums using the content table of the graph dataset and then access the
associated content as follows:

1 $ aws s3 cp s3://softwareheritage/content/\

2 8624bcdae55baeef00cd11d5dfcfa60f68710a02 .

3 download: s3://softwareheritage/content/8624b[..] to ./8624b[..]

4

5 $ zcat 8624bcdae55baeef00cd11d5dfcfa60f68710a02 | sha1sum

6 8624bcdae55baeef00cd11d5dfcfa60f68710a02 -

7

8 $ zcat 8624bcdae55baeef00cd11d5dfcfa60f68710a02 | head

9 GNU GENERAL PUBLIC LICENSE

10 Version 3, 29 June 2007

11 [..]

Note that individual files are gzip-compressed to further reduce storage size.
The general empirical analysis workflow involves three simple steps: identify the

source code files of interest using the metadata available in the graph dataset, obtain
their checksum identifiers, and then retrieve them in batch and in parallel from public
cloud providers. This process scales well up to many million files to be analysed.
For even larger-scale experiments, e.g., analysing all source code files archived at
Software Heritage, research institutions may consider setting up a local mirror of the
archive.8

1.2.1.3 License Dataset

In addition to datasets that correspond to the actual content of the archive, i.e.,
source code artifacts as encountered among public code, it is also possible to curate
derived datasets extracted from Software Heritage for the specific use cases or fields
of endeavours.

8 See https://www.softwareheritage.org/mirrors/ for details, including storage require-
ments. At the time of writing a full mirror of the archive requires about 1 PiB of raw storage.
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As of today one notable example of such a derived dataset is the license
blob dataset, available at https://annex.softwareheritage.org/public/
dataset/license-blobs/ and described in [52]. It consists of the largest known
dataset of the complete texts of free/open source software (FOSS) license variants.
To assemble it the authors collected from the Software Heritage archive all versions
of files whose names are commonly used to convey licensing terms to software users
and developers, e.g., COPYRIGHT, LICENSE, etc. (the exact pattern is documented as
part of the dataset replication package).

The dataset consists of 6.5 million unique license files that can be used to conduct
empirical studies on open source licensing, training of automated license classifiers,
natural language processing (NLP) analyses of legal texts, as well as historical and
phylogenetic studies on FOSS licensing. Additional metadata about shipped license
files are also provided, making the dataset ready to use in various empirical software
engineering contexts. Metadata include: file length measures, detected MIME type,
detected SPDX [46] license (using ScanCode [36], a state-of-the-art tool for license
detection), example origin (e.g., GitHub repository), oldest public commit in which
the license appeared. The dataset is released as open data as an archive file containing
all deduplicated license files, plus several portable CSV files for metadata, referencing
files via cryptographic checksums.

1.3 Research Highlights

The datasets discussed in the previous section have been used to tackle research
problems in empirical software engineering and neighbouring fields. In this section
we provide brief highlights on the most interesting of them.

1.3.1 Enabling Artifact Access and (Large-Scale) Analysis

Applied research in various fields has been conducted to ease access to such a huge
amount of data as the Software Heritage archive for empirical researchers. This
kind of research is not, strictly speaking, research enabled by the availability of the
archive to solve software engineering problems, but rather research motivated by the
practical need of empowering fellow scholars to do so empirically.

As a first example SwhFS (the “Software Heritage File System”) [6] is a virtual
filesystem developed using the Linux FUSE (Filesystem in User SpacE) framework
that can “mount”, in the UNIX tradition, selected parts of the archive as if they
were available locally as part of your filesystem. For example, starting from a known
SWHID, one can for instance:

1 $ mkdir swhfs

2 $ swh fs mount swhfs/ # mount the archive

3 $ cd swhfs/
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4

5 $ cat archive/swh:1:cnt:c839dea9e8e6f0528b468214348fee8669b305b2

6 #include <stdio.h>

7

8 int main(void) {

9 printf("Hello, World!\n");

10 }

11

12 $ cd archive/swh:1:dir:1fee702c7e6d14395bbf\

13 5ac3598e73bcbf97b030

14 $ ls | wc -l

15 127

16 $ grep -i antenna THE_LUNAR_LANDING.s | cut -f 5

17 # IS THE LR ANTENNA IN POSITION 1 YET

18 # BRANCH IF ANTENNA ALREADY IN POSITION 1

In the second example we are grepping through the code of Apollo 11 guidance
computer code, searching for reference to antennas.

SwhFS allows to bridge the gap between classic UNIX-like mining tools, which
are often relied upon in the fields of empirical software engineering and software
repository mining, as well as by the Software Heritage APIs. However, it is not
suitable for very large scale mining, due to the fact that seemingly local archive
access pass through the public Internet (with caching, but still not suitable for large
experiments).

swh-graph [10] is a way to enable such large-scale experiments. The main idea
behind its approach is to adapt and apply graph compression techniques, commonly
used for graphs such as the Web or social network, to the Merkle DAG graph that
underpins the Software Heritage archive. The main research question addressed by
swh-graph is:

Is it possible to efficiently perform software development history analyses at ultra-large
scale, on a single, relatively cheap machine?

The answer is affirmative. As of today the entire structure of the Software Heritage
graph (≈25 billion nodes + 350 billion edges) can be loaded in memory on a single
machine equipped with ≈ 200 GiB of RAM (roughly: 100 GiB for the direct graph +
100 GiB for its transposed version, which is useful in many research use cases such
as source code provenance analysis). While significant and not suitable for personal
machines, such requirements are perfectly fine for server-grade hardware on the
market, with an investment of a few thousand US dollars in RAM. Once loaded the
entire graph can be visited in full in just a few hours and a single path visit from
end-to-end can be performed in tens of nanoseconds per edge, close to the cost of a
single memory access per edge.

In practical terms, this allows to answer queries such as “where does this file/direc-
tory/commit come from” or “list the entire content of this repositories” in fractions
of seconds (depending just on the size of the answer, in most cases) fully in memory,
without having to rely on a DBMS or even just disk accesses. The price to pay for
this is that: (1) the compressed graph representation loaded in memory is derived
from the main archive and not incremental (it should periodically be recreated) and
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(2) only the graph structure and selected metadata fit in RAM, others reside on disk
(although using compressed representations as well [38]) and need to be memory
mapped for efficient access to frequently accessed information.

Finally, the archive also provides interesting use cases for database research.
Recently, Wellenzohn et al. [49] has used it to develop a novel type of content-and-
structure (CAS) index, capable of indexing over time the evolution of properties
associated to specific graph nodes, e.g., a file content residing at a given place in a
repository changing over time together with its metadata (last modified timestamp,
author, etc.). While these indexes existed before, their deployment and efficient
pre-population were still unexplored at this scale.

1.3.2 Software Provenance and Evolution

The peculiar structure—a fully deduplicated Merkle DAG—and comprehensiveness
of the Software Heritage archive provides a powerful observation point and tool
on the evolution and provenance of public source code artifacts. In particular it is
possible, on the one hand, to navigate the Merkle DAG backwards, starting from
any artifact of interest (source code file, directory, commit, etc.), to obtain the full
list of all places (e.g., different repositories) where it has ever been distributed from.
This area is referred to as software provenance and, in its simplest form, deals with
determining the original (i.e., earliest) distribution place of a given artifact. More
generally, being able to identify all places that have ever distributed it provides a
way to measure software impact, track out of date copies or clones, and more.

Rousseau et al. [44] used the Software Heritage archive in a study that made
two relevant contributions in this area. First, exploiting the fact that commits are
deduplicated and timestamped, they verified that the growth of public code as a
whole, at least as it is observable from the lenses of Software Heritage is exponential:
the amount of original commits (i.e., commits never observed before throughout the
archive, no matter the origin repository) in public source code doubles every ≈ 30
months and has been doing so for the past 20 years. If, on the other hand, we look at
original source code blobs (i.e., files whose content has never been observed before
throughout the archive, up to that point in time), the overall trends remains the same,
only the speed changes: the amount of original public source code blobs doubles
every ≈ 22 months. These are remarkable findings for software evolution, which had
never been verified before at this macro-level.

Second, the authors showed how to model software provenance compactly, so that
it can be represented (space-)efficiently at the scale of Software Heritage, and can
be used to address software audit use cases which are commonplace in open source
compliance scenarios, merger and acquisition audits, etc.
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1.3.3 Software Forks

The same characteristics that enable studying the evolution and provenance of public
code artifacts can be leveraged to study the global ecosystem of software forks. In
particular, the fact that commits are fully deduplicated allows to detect forks—both
collaborative ones, such as those created on social coding platforms to submit pull
requests, and hostile ones used to bring the project in a different direction—even
when they are not created on the same platform. It is possible to detect the fork of a
project originally created on GitHub and living on GitLab.com, or vice-versa, based
on the fact that the respective repositories share a common commit history.

This is important as a methodological point for empirical researchers, because by
relying only on platform metadata (e.g., the fact that a repository has been created by
clicking on a “fork” button on the GitHub user interface) researchers risk overlooking
other relevant forks. In previous work Zacchiroli [52] provided a classification of
the type of forks based on whether they are explicitly tracked as being forks of one
another on a coding platform (Type 1 forks), they share at least one commit (Type
2), or they share a common root directory at some point in their histories (Type 3).
He empirically verified that between 3.8% and 16% forks could be overlooked by
considering only type 1 forks, possibly inducing a significant threat to validity for
empirical analyses of forks that strive to be comprehensive.

Along the same lines, Bhattacharjee et al. [9] (participants in the MSR 2020
mining challenge) focus their analyses on “cross-platform” forks between GitHub
and GitLab.com, identifying several cases in which interesting development activity
can be found on GitLab even for projects initially mirrored from GitHub.

1.3.4 Diversity, Equity, and Inclusion

Diversity, equity, and inclusion studies (DE&I) are hot research topics in the area
of human aspects of software engineering. Free/open source software artifacts, as
archived by Software Heritage, provides a wealth of data for analysing evolutionary
DE&I trends, in particular in the very long term and at the largest scale attempted
thus far.

A recent study by Zacchiroli [51] has used Software Heritage to explore the trend
of gender diversity over a time period of 50 years. He conducted a longitudinal study
of the population of contributors to publicly available software source code, analysing
1.6 billion commits corresponding to the development history of 120 million projects,
contributed by 33 million distinct authors over a period of 50 years. At this scale
authors cannot be interviewed to ask their gender, nor cross-checking with large-
enough complementary dataset was possible. Instead, automated detection based on
census data from around the world and the gender-guesser tool (benchmarked for
accuracy, and popular in the field) was used. Results show that, while the amount of
commits by female authors remains very low overall (male authors have contributed
more than 92% of public code commits over the 50 years leading to 2019), there
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is evidence of a stable long-term increase in their proportion over all contributions
(with the ratio of commits by female authors growing steadily over 15 years, reaching
in 2019 for the first time 10% of all contributions to public code).

Follow up studies have added the spatial dimension investigating the geographic
gap in addition to the gender one. Rossi et al. [42] have developed techniques to
detect the geographic origin of authors of Software Heritage commit, using as signals
the timezone offset and the author names (compared against census date from around
the world). Results over 50 years of development history show evidence of the early
dominance of North America in open source software, later joined by Europe. After
that period, the geographic diversity in public code has been constantly increasing,
with more and more contributions coming from Central and South Asia (comprising
India), Russia, Africa, Central and South America.

Finally, Rossi et al. [43] put together the temporal and spatial dimension using the
Software Heritage archive to investigate whether the ratio of women participation
over time shows notable differences around the world, at the granularity of 20 macro
regions. The main result is that the increased trend of women participation is indeed
a world-wide phenomenon, with the exception of specific regions of Asia where
the increase is either slowed or completely flat. An incidental finding is also worth
noting: the positive trend of increased women participation observed up to 2019 has
been reversed by the COVID-19 pandemic, with the ratio of both contributions by
and active female authors decreasing sharply starting at about that time.

These studies show how social aspects of software engineering can benefit from
large-scale empirical studies and how they can be enabled by comprehensive, public
archives of public code artifacts.

1.4 Building the Software Pillar of Open Science

Software plays a key role in scientific research, and it can be a tool, a result, and a research
object. [...] France will support the development and preservation of source code – insepara-
ble from the support of humanity’s technical and scientific knowledge – and it will, from this
position, continue its support for the Software Heritage universal archive. So as to create an
ecosystem that connects code, data and publications, the collaboration between the national
open archive HAL, the national research data platform Recherche Data Gouv, the scientific
publishing sector and Software Heritage will be strengthened.

Second french national plan for open science, July 2021 [23]

Software is an essential research output, and its source code implements and
describes data generation and collection, data visualisation, data analysis, data trans-
formation, and data processing with a level of precision that is not met by scholarly
articles alone. Publicly accessible software source code allows a better understand-
ing of the process that leads to research results, and open source software allows
researchers to build upon the results obtained by others, provided proper mechanisms
are put in place to make sure that software source code is preserved and that it is
referenced in a persistent way.
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There is a growing general awareness of its importance for supporting the re-
search process [12, 47, 26]. Many research communities focus on the issue of scien-
tific reproducibility and strongly encourage making the source code of the artefact
available by archiving it in publicly accessible long-term archives; some have even
put in place mechanisms to assess research software, like the Artefact Evaluation
process introduced in the ESEC-FSE 2011 conference and now widely adopted by
many computer science conferences [13], and the ACM Artifact Review and Badg-
ing program. 9 Other raise the complementary issues of making it easier to discover
existing research software, and giving academic credit to its authors [45, 27, 31].

These important issues are similar in spirit to those that led to the now popular
FAIR data movement [50], and as a first step it is important to clearly identify the
different concerns that come into play when addressing software, and in particular
its source code, as a research output. They can be classified as follows:

Archival: software artifacts must be properly archived, to ensure we can retrieve
them at a later time;

Reference: software artifacts must be properly referenced to ensure we can identify
the exact code, among many potentially archived copies, used for reproducing a
specific experiment;

Description: software artifacts must be equipped with proper metadata to make it
easy to find them in a catalog or through a search engine;

Citation: research software must be properly cited in research articles in order to
give credit to the people that contributed to it.

These are not only different concerns, but also separate ones. Establishing proper
credit for contributors via citations or providing proper metadata to describe the
artifacts requires a curation process [11, 7, 15] and is way more complex than
simply providing stable, intrinsic identifiers to reference a precise version of a
software source code for reproducibility purposes [27, 8, 17]. Also, as remarked
in [26, 8], research software is often a thin layer on top of a large number of software
dependencies that are developed and maintained outside of academia, so the usual
approach based on institutional archives is not sufficient to cover all the software that
is relevant for reproducibility of research.

In this section, we focus on the first two concerns, archival and reference, that can
be addressed fully by leveraging the Software Heritage archive, but we also describe
how Software Heritage contributes through its ecosystem to the two other concerns.

1.4.1 Software in the Scholarly Ecosystem

Presenting results in journal or conference articles has always been part of the
research activity. The growing trend, however, is to include software to support or
demonstrate such results. This activity can be a significant part of academic work
and must be properly taken into account when researchers are evaluated [8, 45].

9 https://www.acm.org/publications/policies/artifact-review-badging
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Software source code developed by researchers is only a thin layer on top of the
complex web of software components, most of them developed outside of academia,
that are necessary to produce scientific results: as an example, Figure 1.5 shows the
many components that are needed by the popular matplotlib library [28].
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Fig. 1.5: Direct and indirect dependencies for a specific python package (matplotlib).
In blue the Python dependencies, in red the “true” system dependencies incurred
by python (e.g., the libc or libjpeg62), in green some dependencies triggered by
the package management system but which are very likely not used by python (e.g.,
adduser or dpkg).

As a consequence, scholarly infrastructures that support software source code
written in academia must go the extra mile to ensure they adopt standards and
provide mechanisms that are compatible with the ones used by tens of millions of
non-academic software developers worldwide. They also need to ensure that the
large amount of software components that are developed outside academia, but are
relevant for research activities, are properly taken into account.

Over the recent years, there have been a number of initiatives to add support for
software artifacts in the scholarly world, that fall short of satisfying these require-
ments. They can be roughly classified in two categories:

overlays on public forges provide links from articles to the source code repository
of the associated software artifact as found on a public code hosting platform
(forge); typical examples are websites like https://paperswithcode.com/,
http://www.replicabilitystamp.org/ and the Code and data links re-
cently introduced in ArXiv.org.

deposits in academic repositories take snapshots of a given state of the source
code, usually in the form of a .zip or .tar file, and store it in the repository
exactly like an article or a dataset, with an associated publisher identifier; typical
examples in Computer Science is the ACM Digital Library, but there are a
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number of general academic repositories where software artefacts have been
deposited, like FigShare and Zenodo.

The approaches in the first category rely on code hosting platforms that do not
guarantee persistence of the software artifact: the author of a project may alter, re-
name, or remove it, and we have seen that code hosting platforms can be discontinued,
or decide to remove large amount of projects.10

The approaches in the second category do take into account persistence, as they
archive software snapshots, but they loose the version control history and do not
provide the granularity needed to reference the internal components of a software
artifact (directories, files, snippets).

And none of the initiatives in these categories provides a means to properly
archive and reference the numerous external dependencies of software artefacts.

This is where Software Heritage comes into play for Open Science, by providing
an archive designed for software that provides persistence, preserves the version
control history, supports granularity in the identification of software artefacts and
their components, and harvests all publicly available source code.

The differences described above are summarised in the following table, where we
only consider infrastructures in the second category described above, as they are the
only one assuming the mission to archive their contents. We also take into account
additional features found in academic repositories, like the possibility of depositing
content with an embargo period, which is not possible on Software Heritage, and
the existence of a curation process to obtain qualified metadata, which is currently
out of scope of Software Heritage.

1.4.2 Extending the Scholarly Ecosystem Architecture to Software

In the framework of the European Open Science Cloud initiative (EOSC), a working
group has been tasked in 2019 to bring together representatives from a broad spec-
trum of scholarly infrastructures to study these issues and propose concrete ways to
address theme. The result, known as the EOSC Scholarly Infrastructures for Research
Software (SIRS) report [18] was published in 2020 and provides a detailed analysis
of the existing infrastructures, their relationships, and the workflows that are needed
to properly support software as a research result on par with publications and data.

Figure 1.6 presents the main categories of identified actors:

Scholarly repositories: services that have as one of their primary goals the long-term
preservation of the digital content that they collect.

Academic publishers: organisations that prepare submitted research texts, possibly
with associated source code and data, to produce a publication and manage the
dissemination, promotion, and archival process. Software and data can be part

10 Google Code and Gitorious.org were shut down in 2015, Bitbucket removed support for the
Mercurial VCS in 2020, and in 2022 Gitlab.com considered removing all projects inactive for more
than a year.
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Table 1.2: Comparison of infrastructures for archiving research software. The various
granularities of identifiers are abbreviated with the same convention used in SWHIDs
(snp for snapshot, etc.), plus the abbreviation frg that stands for the ability to identify
a code fragment.

Criteria
Infrastructure Software Heritage ACM DL HAL Figshare Zenodo

identifier
extrinsic

intrinsic extrinsic + intrinsic extrinsic extrinsic
(via SWH)

granularity snp, rel, rev
dir, cnt, frg dir dir dir rel, dir

archival
harvest
deposit deposit deposit deposit deposit

save code now

history full VCS no no no releases

browse code yes no no no no

scope universal discipline academic academic academic

embargo no no yes yes yes

curation no yes yes no no

integration

BitBucket,
SourceForge,

GitHub, SWH GitHub
Gitea, Gitlab,

HAL, etc.

of the main publication, or assets given as supplementary materials depending
on the policy of the journal.

Aggregators: services that collect information about digital content from a variety
of sources with the primary goal of increasing its discoverability, and possi-
bly adding value to this information via processes like curation, abstraction,
classification, and linking.

These actors have a long history of collaboration around research articles, with
well defined workflows and collaborations. The novelty here is the fact that to handle
research software, it is no longer possible to work in isolation inside the academic
world, for the reasons explained previously: one needs a means to share information
and work with other ecosystems where software is present, like industry and public
administration.



22 Roberto Di Cosmo and Stefano Zacchiroli

Fig. 1.6: Overview of the high level architecture of scholarly infrastructures for
research software, as described in the EOSC SIRS report

One key finding of the EOSC SIRS Report is that Software Heritage provides
the shared basic architectural layer that allows to interconnect all these ecosystems,
because of its unified approach to archiving and referencing all software artefacts,
independently of the tools or platforms used to develop or distribute the software
involved.

1.4.3 Growing Technical and Policy Support

In order to take advantage of the services provide by Software Heritage in this setting,
a broad spectrum of actions have been started, and are ongoing. We briefly survey
here the ones that are most relevant at the time of writing.

At the national level, France has developed a multi-annual plan on Open Science
that includes research software [22, 23], and consistently implemented this plan
through a series of steps that range from technical development to policy measures.

On the technical side, the French national open access repository HAL [15]
(analogous to the popular arXiv service11) has been integrated with the Software
Heritage archive. The integration allows researchers to have their software projects
archived and referenced in Software Heritage, while curated rich metadata and
citation information is made available on HAL [15], with a streamlined process
depicted in Figure 1.7.

11 https://arxiv.org
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Fig. 1.7: Overview of the interplay between HAL and Software Heritage for research
software

On the policy side, the second french national plan for open science [23], published
in July 2021, prescribes the use of Software Heritage and HAL for all the research
software produced in France, and Software Heritage is now listed in the official
national roadmap of research infrastructures published in February 2022 [24].

This approach is now being pushed forward at the European level, through funding
for consortia that will build the needed connectors between Software Heritage and
several infrastructures and technologies used in academia, using the French expe-
rience as a reference. Most notably, the FAIRCORE4EOSC [2] European project
include plans to build connectors with scholarly repository systems like Data-
verse [4] and InvenioRDM [29] (the white-label variant of Zenodo), publishers
like Dagstuhl [3] and Episcience [1], and aggregators like swMath [21] and Ope-
nAire [37].
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1.4.4 Supporting Researchers

The growing awareness about the importance of software as a research output will
inevitably bring new recommendations for research activity, that will eventually
become obligations for researchers, as we have seen with publications and data.

Through the collaboration with academic infrastructures, Software Heritage is
striving to develop mechanisms that minimise the extra burden for researchers, and
we mention here a few examples.

A newly released extension, codename updateswh, for the popular web browsers
Firefox and Google Chrome allows to trigger archival in just one click for any public
repository hosted on BitBucket, GitLab (.com, and any instance), GitHub and any
instance of Gitea. It also allows to access in one click the archived version of the
repository and obtain the associated SWHID identifier.

Integration with web hooks is available for a variety of code hosting platforms,
including BitBucket, GitHub, GitLab.com and Source forge, as well as for instances
of GitLab and Gitea, which enable owners of projects hosted on those platforms to
trigger archival automatically on any new release, reducing the burden on researchers
even more.

Software Heritage will try to detect and parse intrinsic metadata present in soft-
ware projects independently of the format chosen, but we see the value of standard-
ising on a common format. This is why, with all academic platforms we are working
with, we are advocating the use of codemeta.json, a machine readable file based
on the CodeMeta extension of schema.org, to retrieve automatically metadata as-
sociated to software artifact, in order to avoid the need for researchers to fill forms
when declaring software artifacts in academic catalogs, following the schema put in
place with the HAL national open access portal.

Finally, we have released the biblatex-software bibliographic style extension
to make it easy to cite software artefacts in publications written using the popular
LATEX framework.

1.5 Conclusions and Perspectives

In conclusion, the Software Heritage ecosystem is a useful resource for both software
engineering studies and for Open Science. As an infrastructure for research on
software engineering, the archive provides numerous benefits. The SWHID intrinsic
identifiers make it easier for researchers to identify and track software artifacts across
different repositories and systems. The uniform data structure used by the archive
abstracts away all the details of software forges and package managers, providing
a standardised representation of software code that is easy to use and analyse. The
availability of the open datasets makes it possible to tailor experiments to one’s needs
and improves their reproducibility. An obvious direction at the time of writing is
to leverage Software Heritage’s extensive source code corpus for pre-training large
language models. Future collaborations may lead to integrate functionalities like the
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domain-specific language from the Boa project or the efficient data structures of the
World of Code project, enabling researchers to run more specialised queries and
achieve more detailed insights.

Regarding the Open Science aspect, Software Heritage already offers the reference
archive for all publicly available research software. The next step is to interconnect
it with a growing number of scholarly infrastructures, which will increase repro-
ducibility of research in all fields, and support software citation directly from the
archive, contributing to increasing visibility of research software.

Going forward, we believe that Software Heritage will provide a unique observa-
tory for the whole software development ecosystem, both in academia and outside of
it. We hope that with growing adoption it will play an increasingly valuable role in
advancing the state of software engineering research and in supporting the software
pillar of open science.
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