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Aspirations for artificial intelligence (AI) as a catalyst
for scientific discovery are growing. High-profile successes
deploying AI in domains such as protein folding have
highlighted AI’s potential to unlock new frontiers of scientific
knowledge. However, the pathway from AI innovation to
deployment in research is not linear. Those seeking to drive
a new wave of scientific progress through the application of
AI require a diffusion engine that can enhance AI adoption
across disciplines. Lessons from previous waves of technology
change, experiences of deploying AI in real-world contexts
and an emerging research agenda from the AI for science
community suggest a framework for accelerating AI adoption.
This framework requires action to build supply chains
of ideas between disciplines; rapidly transfer technological
capabilities through open research; create AI tools that
empower researchers; and embed effective data stewardship.
Together, these interventions can cultivate an environment of
open data science that deliver the benefits of AI across the
sciences.

1. Introduction
The information revolution has fostered a wave of progress
in artificial intelligence (AI), driven by the ability to collect,
store, exchange and interconnect different datasets. While the
mechanization of the industrial revolution required coal and
heat engines, informational mechanization deploys data and
data engines to generate actionable knowledge. This process
requires a combination of mathematical and computational
modelling, and a combination of skillsets that falls across
traditional academic boundaries.

Access to data, development of increasingly powerful
computer systems, and algorithmic advances have contributed
to rapid progress in AI over the last 10 years. The term ‘AI’ today
describes a cluster of different methods and tools. Much of the
recent progress in AI has been driven by advances in machine
learning, an approach to AI focused on training computer
systems to perform complex tasks by learning from data. In
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public and policy debates, these terms are used interchangeably. This paper uses both to describe the
use of AI for scientific discovery, acknowledging that data-driven methods are a primary focus for
many of today’s AI for science efforts.

Data have long been at the heart of the scientific method. Science advances understandings of the
world by collecting, analysing and interrogating data. Science could, therefore, be expected to be at the
vanguard of the information revolution, taking advantage of new sources of data to extract new
insights about the world around us. Many of today’s pressing research and policy challenges demand
the ability to analyse, understand and identify levers that influence complex systems. For researchers
across domains, AI-enabled analytical tools open the possibility of generating novel insights into the
dynamics of such systems, leveraging data to drive scientific progress. For decision-makers in research,
policy and industry, the use of AI to accelerate discovery offers a mechanism to boost scientific
productivity and generate innovative solutions to issues of scientific and societal concern.1 The EU’s
Innovation Missions, for example, set out crucial research-policy challenges in climate adaptation,
cancer prevention and treatment, ocean protection, smart cities and soil health, where innovative
solutions are needed to sustain human health and wellbeing. AI could supercharge research and
development activities across these areas, by offering advanced analytical techniques or decision-
support systems.2

Rallying around these ambitious goals to generate new understandings of complex physical,
biological, environmental, social and technological systems, across disciplines researchers are making
use of AI technologies to interrogate new data sources [1,2]. These efforts have yielded high-profile
successes that suggest the significant potential of AI for science. The AlphaFold project, for example,
leveraged AI methods to make impressive progress in predicting the three-dimensional structure of
proteins from their amino acid components [3]. A growing pool of projects illustrate the breadth
of potential applications in AI for discovery, from archaeological to zoological research.3 However,
achieving high levels of adoption across research disciplines remains a distant goal.

In some respects, this pattern is unsurprising. The translation of innovation to adoption is neither
a simple nor linear process. Lessons from the history of technological change [4] and analyses of
the last 10–15 years of economic growth [5] highlight the complexity of the processes underpinning
technological diffusion, and the web of relationships between innovation, practice and productivity
that influences its success.

The question that follows is how to create the conditions that enable the diffusion of AI across the
sciences. This requires consideration of the environment into which AI is being deployed. To explore
this environment, this paper draws together perspectives from previous waves of technology adoption,
AI and policy research to consider what infrastructure can enhance the diffusion of AI across the
sciences. It suggests a framework for enabling the adoption of AI for science. The intention here is not
to present a detailed adoption roadmap, but to articulate an approach to AI in science—rooted in open
data science—that can build capabilities in this field over the long term.

2. Understanding the AI productivity puzzle
In 1987, the economist Robert Solow observed that ‘You can see the computer age everywhere but
in the productivity statistics’ [6]. Solow’s productivity paradox described the disconnect between the
pace of technological innovation arising from the computing revolution and the apparent stagnation
of the US economy. This pattern continued to the 1990s, until widespread adoption of information
technologies began to transform traditional business processes, such as supply chain and distribution
[7].

Similar patterns can be seen throughout the history of innovation. There is a lag between invention
and widespread benefit, as people and organizations reorganize around new technologies, finding new
processes and ways of working. While innovation brings productivity benefits, these benefits depend
on patterns of adoption and can take decades to emerge.4 The process of reorganization—who adapts
in what ways—also influences the extent to which the benefits of innovation are shared across sectors
and societies.5

In science, it is already possible to see varied patterns of AI adoption across disciplines. Large-scale
modelling and data challenges can be found at the core of domains such as astronomy (e.g. [8]),
and climate science,6 while computational biology has a well-established culture of data science for
scientific discovery, with large-scale projects such as the Human Genome Project helping to embed a
culture of using data science for science. Today, projects such as AlphaFold [9] extend the frontiers of
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these efforts, demonstrating how AI can be applied to tackle long-standing scientific challenges. These
successes act as a beacon, inspiring researchers with the possibilities of AI for scientific discovery.
Translating this success into wider scientific progress will require further work to embed AI in those
domains without such a strong tradition of deploying data science methods.

In  some regards,  this  disciplinary dynamic—early  adopter  domains  reaping the  benefits
of  new technologies  while  others  have yet  to  engage—mirrors  well-established patterns  of
technology diffusion in  other  sectors.7  When considering how to  promote  the  diffusion of
innovation across  industry  sectors  and organizations,  policymakers  have looked to  stimulate  both
supply and demand,8  through strategies  that  include leveraging supply  chains  as  a  pathway for
spreading innovation;  enhancing technology transfer  through university–business  collaboration;
and building human capital  by spreading skills  across  companies  [10].

While  dealing with  different  market  dynamics  and policy  frameworks,  these  analyses  offer  a
lens  for  those  promoting AI  as  a  tool  for  enhancing scientific  productivity,  helping to  identify
relevant  institutional,  technical  or  policy  levers  for  change.  The results  of  these  efforts  suggest
that:  (i)  to  achieve a  step-change in  scientific  discovery using AI,  adoption across  domains  will
be  necessary,  and interventions  must  embrace  both early-adopter  disciplines  and the  long tail;
(ii)  stimulating demand is  essential,  through supply chains  of  ideas  and institutional  interven-
tions  that  cultivate  a  desire  to  use  AI  for  science;  and (iii)  further  work is  needed to  enhance
the  absorptive  capacity  of  disciplines  to  make use  of  AI,  through efforts  to  build  skills  and
human capital.  These  lessons  can help provide a  framework for  supporting the  adoption of
AI  for  scientific  discovery.  Before  designing such frameworks,  however,  researchers  wishing to
deploy AI  for  science  must  consider  whether  their  AI  tools  are  fit  for  purpose.

3. Deploying AI in science
Today’s AI methods can deliver impressive outcomes when trained to perform defined tasks in
controlled environments. Automating more sophisticated tasks typically requires combinations of
machine learning sub-components, creating complex interactions between data, algorithms, models
and system outputs. This complexity contributes to a gap between user aspirations for the tasks that AI
might perform and the safety and reliability of AI systems in deployment.

This disconnect has already resulted a range of AI failures in real-world contexts. Failure modes
vary, arising at each stage of the AI development pipeline, from understanding user needs, to
managing data quality, to maintaining performance levels in changeable environments or anticipating
user interactions [11]. These failures can have significant implications—for individuals that might be
subject to physical harm, for communities that might suffer discrimination or marginalization, for
organizations reliant on AI for business processes and for society as a whole, if AI contributes to wider
social disruption.9

The use of AI in research and development efforts connected to COVID-19 response highlights the
challenges of designing and implementing AI systems that can perform well in real-world contexts. In
the UK, AI played little—if any—role in the response to COVID-19 [12–14]. Where systems were
created with the intention of improving healthcare outcomes, problems with data quality,
methodological issues in the design of AI models and deficiencies in reporting practices all contributed
to the development of a suite of AI systems that were generally unfit for use in clinical settings [14–16].
Researchers working in other disciplines report similar issues, highlighting the limited usefulness of
some existing training datasets for research challenges, the potential for AI to reinforce inaccuracies or
bias in data and the vulnerability of some existing AI methods to adversarial attacks or other issues
with robustness [17]. For AI to be successfully deployed in research, AI for science needs policies,
practices and methods to tackle these issues. A framework for deploying AI in science that acknowl-
edges these real-world deployment challenges and provides mechanisms to build capability—both in
the application of existing AI tools and the development of next-generation AI tools—can help increase
the effectiveness of AI for science projects.

The need to overcome the limitations of today’s systems and practices also offers an opportunity to
envisage a new wave of progress in AI’s technical capabilities, creating advanced analytical tools that
can be deployed in the service of scientific discovery. This research agenda in AI for science spans [18]:

— Building the technical foundations of AI for science. The central goal of AI for science is to leverage
insights from data to generate new scientific knowledge. Generating this knowledge requires
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technical developments to increase the analytical power of today’s AI for science tools. Areas
for progress include: advances in simulation and emulation to allow researchers to interrogate
the workings of complex systems; causal AI methods that can detect scientifically meaningful
structure in data, analysing not only what patterns exist but also why they emerge; and the
ability to formalize concepts such as interpretability or uncertainty quantification [19].

— Interfacing with domain knowledge. Translating insights from data to scientifically actionable
information requires mechanisms for information exchange between researcher and AI. In
pursuit of this goal, there are already model design strategies that help encode domain knowl-
edge in AI systems, for example making use of known physical laws or invariances. More
sophisticated techniques are needed to access and leverage the tacit knowledge that researchers
also bring to their work. Additional insight can be gained by integration of simulations, for
example mechanistic models or counterfactual simulations either within the model’s inductive
bias or through data directly generated from these systems. A combination of new learning
strategies, system designs and user interfaces open the possibility of creating analytical assistants
with a form of ‘theory of mind’, able to identify a researcher’s goals or interests, even when these
might be unspoken or uncertain [20].

— Enabling adoption. Widespread adoption of generalizable AI tools will require both the technical
progress set out above and mechanisms to facilitate their access and use. Libraries, toolkits and
user guides play an important role in capturing the knowledge generated by the AI for science
community and supporting researchers to overcome the practical challenges of deploying AI.

Such advances offer the possibility of both driving forward the science of AI and creating AI tools that
can better serve the needs of researchers and organizations deploying AI.

4. Creating an infrastructure for diffusion
Accelerating the adoption of such next-generation AI for science tools requires an engine for diffusing
these innovations across the sciences. Open data science for science offers a framework to deliver this
diffusion, based on five pillars:

— supply chains of ideas to advance AI for science methods and applications;
— transfer of technological capabilities from methods to application communities through open

toolkits;
— capability building that empowers researchers to deploy AI for their science;
— data-first culture that delivers effective data stewardship; and
— interfaces between users and AI.

4.1. Supply chains of ideas to advance methods and applications
Connections between disciplines are central to the success of AI in science. Supply chains of ideas are
necessary to take innovative ideas from their source to where they can be successful adopted [21].
Sustained engagement between disciplines plays an important role in building these supply chains, by
increasing mutual understanding of what different disciplines can deliver. Central to their success is
that ideas can connect in different directions: that innovative AI methods can be deployed in areas of
scientific need, and that scientific needs can be used to inspire innovations in AI. The result should be
a dynamic interdisciplinary community where advances in AI support advances in science, and vice
versa, fuelled by collaborations between domain and AI experts that deliver benefits to both.

Multi-disciplinary work also brings challenges, many of which are well-characterized in studies
of research culture and policy. In the context of AI adoption, a particular challenge is the different
languages employed by different domains for related technical ideas. The use of jargon in specific
fields and assumptions around what is canonical knowledge—versus what specifics might need
explaining—act as barriers to collaboration.

Data offer an opportunity to overcome these barriers by providing a focal point for convening
different disciplines. Even where data do not exist, the process of exploring what data might be
required to answer a question can provide a shared point of reference for scientists approaching
a research area from different disciplinary backgrounds [22]. Spaces for such conversations and
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collaborations are necessary to create an environment in which multi-disciplinary collaborations can
emerge, supported by institutional research cultures that recognize and reward individuals working at
the interface of different domains.

The result of overcoming these barriers is research at the interface of AI and the sciences that pushes
the boundaries of AI capabilities and disciplinary knowledge. Examples include new reflections on the
nature of biological understanding in the context of AI progress [23], advances in AI methods to enable
their application for research10 or ideas for future areas of inquiry [24].

4.2. Transfer of technological capabilities through investing in tools and toolkits
In environments that do not naturally encourage such multi-disciplinarity, machine learning can
become intellectually isolated from the sciences in which it is deployed. Those working on machine
learning techniques within a specific scientific domain are often separated from the wider machine
learning community, lacking access to the expertise they need to avoid reinventing the wheel or
chasing phantoms in their efforts to deploy useful machine learning methods.

To help correct this dynamic, further efforts are needed to make new analysis methodologies
available as widely and as rapidly as possible. Those creating new AI techniques must also
ensure they can be operated safely and reliably in deployment, employing methods and design
practices that increase the robustness of the toolkits they produce. This requires an institutional
environment that supports publication of new methods with few constrictions on their use and
with relevant explanatory material. Team science can play a role in addressing these concerns,
bringing together a mix of expertise in AI, science and engineering to create accessible toolkits in
AI for science.

Kuhn’s analysis of the structure of scientific revolutions suggests that scientific paradigms are stored
in books, but that modern information infrastructure has caused a shift towards the storage of scientific
knowledge in software (in the form of models) or data [25,26]. Computational biology is one domain
that has led in provision of these data and models derived from it. One example of such an approach
can be seen in the Structural Antibody Database (SAbDab),11 driven by the work of the Oxford Protein
Informatics Group, which maintains data sources as well as building machine learning models from
them [27]. Kuhn associated the process of ‘normal science’ as solving within a paradigm, historically
defined by textbook knowledge [25]. Major scientific projects such as AlphaFold are also shifting the
paradigm of science itself. While headline science is often conducted in these one-off projects, many
scientists continue to pursue the puzzles that are defined by these works. It is the shifting nature of
the paradigm and its representation in software and data that has effects well beyond these larger
well-known achievements.

4.3. Capability building that empowers researchers to use AI
While further progress in AI methods is necessary, for many scientists access to AI is restricted
not by the lack of availability of better AI tools, but by the technical inaccessibility of existing meth-
ods. A fundamental challenge for the field is bridging this gap between the data analyst and the
scientist. New approaches are needed to equip scientists with the fundamental concepts that will
allow them to explore their own areas of research using a complete mathematical and computational
toolbox. Training this cohort of AI practitioners, who are empowered to deploy AI tools for their
research through research-focused teaching and learning activities, will require teaching methods that
fall outside the scope of business-as-usual university training. For example, from 2020 to 2023 the
Accelerate Programme for Scientific Discovery trained over 400 researchers in data science and AI. This
training offer has included:

— taught courses on methods in data science and machine learning;
— practical training in how to build data pipelines, package and publish software and hands-on

sessions in how to use Large Language Models for research; and
— advice and mentoring in the practical application of data science and machine learning in

science.12
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Recent advances in generative AI methods, such as Large Language Models, are also likely to disrupt
this landscape as they provide new interfaces between humans and data that provide opportunities for
better data representation. This also comes with risks of misrepresentation, discussed further below.

4.4. Data-first culture
The core of the information revolution is the ability to monitor, store, interconnect and analyse large
interacting datasets. The use of many of today’s most prominent AI methods in science will rely on
access to well-curated and interconnected data sources. Policies for research data management are
now well-established in research institutions. While its merits might not be universally accepted by
individual scientists, funding agencies today encourage widespread data sharing.13 Aspirations for
wider deployment of AI for science underscore the importance of effective data governance, with good
data management practices requiring further uptake across disciplines.

Many of these existing frameworks for data governance focus on the management of ‘traditional’
data sources—data collected for research with a specific purpose in mind. As the variety and volume
of data with potential application in research grows, institutions and researchers must also grapple
with how to steward the use of new data sources. Individuals and organizations today generate data
from a range of daily activities, and there are opportunities to use so-called happenstance data in
research. With such data not having been actively collected with a research question in mind, extra
care is needed in their analysis, to prevent misleading results.14 Use of happenstance data can also
generate new ethical concerns, if its integration and analysis yields sensitive insights about individuals
or creates other concerns around privacy.15

These changing opportunities and challenges in relation to data use highlight some of the fractures
in the current data governance landscape. There are open questions about:

— what further policy interventions can promote data accessibility while ensuring its trustworthy
governance;16

— what incentives can help promote adoption of existing interventions, such as the FAIR princi-
ples,17 that aim to support data sharing and use; and

— what research practices can help ensure the responsible deployment of AI in science, in the
context of today’s needs for careful data stewardship.18

In response to concerns about governance of potentially sensitive data and the range of operational
barriers to data access that can arise across organizations, synthetic data have attracted interest as a
potential alternative data source. These artificially generated data are designed to mimic the charac-
teristics of a real-world dataset, with the aim of providing a data resource that can help develop
machine learning algorithms [28]. The hope for such data is that their use would offer a route to
addressing some of the ethical concerns associated with personal or commercially sensitive data,
such as maintaining privacy or tackling bias, enabling faster progress in the development of machine
learning systems [29]. In areas such as healthcare, for example, such data could be used to simulate the
impact of different policy interventions on health outcomes [30]. However, alongside these hopes for
synthetic data, recent years have brought growing understanding of the limitations of these resources,
both in terms of their ability to address concerns around privacy and representativeness of real-world
datasets.19 While a useful tool for machine learning development in some contexts, synthetic data will
not circumvent the need for trustworthy data governance practices.

New data stewardship mechanisms will be necessary to assimilate complex information resources
while managing them in line with legal and ethical obligations [31]. Institutional innovations, such as
data trusts, offer a route to better aligning public expectations in relation to data governance with its
proposed uses [32] and pilot projects are already trialling these approaches to research data gover-
nance.20 In the long term, such data intermediaries offer a mechanism to address both the demand for
access to data and the need to align data access arrangements with public interests and expectations.
While these mechanisms develop, organizations can help foster a data-first culture through incentives
for trustworthy, open data stewardship and clear practices for delivering such stewardship.
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4.5. Interfaces between users and AI
In science, the interface between data and human has always been subject to potential misrepresenta-
tion. Mark Twain attributed the quote ‘There are three types of lies: lies, damned lies and statistics’
to Benjamin Disraeli, but in practice, this sentiment can be found in several different forms across the
late nineteenth century. It reflects the manner in which the ‘science of state’ could be corrupted by
numbers that give humans a non-representative impression of the underlying challenges. The modern
equivalent of this quote would be ‘lies, damned lies and big data’, as the challenges of misrepresenta-
tion have shifted with both the quantity of data that can be collected and the use of computer-driven
interpolations that can incorporate new sources of bias in their models.

This challenge leads to a ‘big data paradox’ where increasing data collection results in less
understanding, as the scale of data available is beyond an individual human’s ability to assimilate, and
yet the data may still misrepresent the underlying phenomena. Similarly, large models lead to a ‘big
model paradox’ where more and more aspects of the underlying phenomena are encoded in computer
models, but the complexity of the model moves beyond an individual human’s understanding. This
phenomenon is related to a challenge that, in the context of computer systems, Jonathan Zittrain refers
to as intellectual debt [33]. The main message is that larger is not necessarily better when greater size
moves models beyond our traditional (often statistical) methods of verification.

Generative AI models offer the potential to both make this problem worse or improve the challenge
significantly depending on how they are deployed. Their capabilities to wield language promise a
future where the relevant information about a dataset or a model challenge could be extracted in the
same way that humans exchange information with each other, i.e. through conversation. If successfully
deployed, such models could enhance researchers’ ability to interact with AI systems, to interrogate
their outputs and to explore the implications of those outputs.

However, generative AI also opens a new front for the possibilities of misrepresentation, with
associated challenges of understanding how humans exchange information and uncertainties through
this medium. The tendency of generative models to provide convincing ‘hallucinations’ as outputs
calls into question their accuracy and reliability, with implications for how they can be deployed
responsibly in the scientific context [34]. Concerns about bias [35], privacy and security [36] also
influence how generative AI systems can be adopted responsibly for research [37].

5. Conclusion
Twelve years ago, the Royal Society’s report Science as an open enterprise set an agenda for embedding
the principles of open science in a changing scientific environment. Its calls for more recognition for
the value of data management, standards for information sharing and new software tools, among other
areas for action, sought to translate excitement about the potential of big data to a new revolution in
open science [38]. The decade since its publication has seen both significant progress in the volume
of data available to researchers and the technical capabilities of AI as a tool to analyse it. It has
also highlighted the fault lines in research and innovation policy—in research culture, funding and
incentivization, data management and open science—that continue to affect the adoption of data
science across research disciplines. If not addressed, these will hold back the potential of AI in science.
Over the same period, concerns about the ‘reproducibility crisis’ in research have continued to emerge
in different fields [39], including AI for science [40]. In this wider context, open science is a crucial tool
to maintain scientific rigour, by enabling researchers to build on—or challenge—research outputs and
evaluate the reliability of AI methods before deployment.

There is no ‘silver bullet’ for the challenges of deploying AI for scientific discovery. However,
the interventions described above point to an approach that—when combined with the appropriate
domain expertise—can help address these issues in the long term through new communities of
research and practice. This approach is open data science [41]].

The open-source community has played a central role in enabling today’s technological environ-
ment. Microsoft’s quasi-monopoly on desktop computing was disrupted by open source software
that would have been unfeasible for any single organization to create; it has been estimated that the
development cost of a full Linux system would be $10.8 billion dollars [42]. Regardless of the veracity
of this figure, it is clear that Linux—and other open-source software—has been an important enabler
of innovation, by providing a foundation on which Apple, Google and others could build.21 In the
modern Internet, tools such as GitHub, Jupyter notebooks, preprint repositories such as arXiv and
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bulletin boards such as Reddit continue this tradition of seeking routes for early distribution and
comment on material.

Open data science aims to bring the same spirit of community resource generation and assimilation
to capitalize on the underlying social driver of this phenomenon: many talented people would like to
see their ideas and work being applied for the widest benefit.

AI researchers and data scientists can help bring about an environment of open data science
through widespread distribution of ideas under flexible BSD-like licenses that give scientific partners
as much flexibility as possible to adapt methods to their own circumstances, and widespread distri-
bution of teaching materials. Domain experts play a role in seeking opportunities to pick up these
methods, engaging with new approaches to professional development and investing in disciplinary
data curation efforts.

Institutions can provide incentive structures that reward researchers for experimentation with the
use of AI, providing career pathways for those pursuing this deeply interdisciplinary work, creating
spaces for those working in AI and those working in scientific domains to exchange knowledge and
ideas, and investing in education programmes that address the gaps in current expertise.

Open data science should be an inclusive movement that operates across traditional boundaries
between academic disciplines, and between companies and academia. It could bridge the gap between
‘data science’ and science, and address the barriers to large-scale analysis of data in areas of pressing
social need (climate; health), spurring a new wave of innovation in both the public and private sector.
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See https://www.elise-ai.eu/sra-refresh/ai-for-european-grand-challenges.
3Examples of current projects from across disciplines are available on the blog for the Accelerate Programme for
Scientific Discovery, here: https://acceleratescience.github.io/blog.
4For a discussion of the economic effects that may influence the impact of AI-enabled automation on work,
see: Acemoglu D, Restrepo P. 2018 Artificial Intelligence, Automation and Work (NBER Working Paper No. 24196).
Cambridge, MA: National Bureau of Economic Research. On similar themes, Brynjolfsson et al. consider the impact
of lags in implementation of AI on productivity growth today: Brynjolfsson E, Rock, D, Syverson C. 2017 Artificial
Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics (NBER Working Paper No. 24001).
Cambridge, MA: National Bureau of Economic Research. These are summarized in: The Royal Society. 2018 The
impact of AI on work: implications for individuals, communities, and societies. See https://royalsociety.org/news/
2018/09/the-impact-of-AI-on-work/.
5Crafts explores the lag between technological inventions that were significant in the British Industrial Revolution
and subsequent productivity gains, considering the role of labour and energy costs in contributing to this dynamic.
Crafts, N. 2010 The Contribution of New Technology to Economic Growth: Lessons from Economic History.
CAGE Online Working Paper Series 01, Competitive Advantage in the Global Economy. See https://warwick.ac.uk/fac/soc/
economics/research/centres/cage/manage/publications/01.2010_crafts.pdf. Mokyr et al. also consider the interlinkage
of social, economic and cultural changes in the context of the impact of technology on working life. Mokyr J,
Vickers C, Ziebarthm NL. 2015 The history of technological anxiety and the future of economic growth: is this time
different? J. Econ. Perspect. 29, 31–50. (doi: 10.1257/jep.29.3.31). Harford considers how these dynamics influenced
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the use of electricity in manufacturing. Harford, T. 2017 Why didn't electricity immediately change manufacturing? See
https://www.bbc.co.uk/news/business-40673694 (accessed 11 April 2024).
6See, for example, work of the Met Office Informatics Lab: https://www.informaticslab.co.uk.
7As Andy Haldane, then Chief Economist at the Bank of England, described in 2018 in relation to innovation ‘In
the fullness of time, innovation should be expected to diffuse through the economy, lifting all boats. That has
been the lesson of every industrial revolution. Yet in the UK, this technological trickle-down, from frontier to tail,
appears to have dried up. A lengthening flotilla of boats has remained in dry dock. The diffusion engine appears,
for them, to have seized up.’ Haldane, A. The UK’s Productivity Problem [10]; available at: https://www.bankofeng-
land.co.uk/-/media/boe/files/speech/2018/the-uks-productivity-problem-hub-no-spokes-speech-by-andy-haldane.
8A recent analysis of this challenge by the Institute for Government characterized the necessary response as follows:
‘Productivity gains need to find their way into companies throughout the economy, diffused through market
forces and motivated management seeking better ways to service growing demand.’ Institute for Government.
2021 Productivity: firing on all cylinders. See https://www.instituteforgovernment.org.uk/sites/default/files/publica-
tions/productivity-restoring-growth.pdf.
9To explore incidents of AI failure, see Partnership on AI: AI incident database, at https://incidentdatabase.ai.
10For example, in environmental science, as introduced by Hickman S. here: https://accelerates-
cience.github.io/2023/02/27/using-ai-to-aid-causal-methods-in-environmental-science.html.
11See: https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab/about.
12For further details, see: https://acceleratescience.github.io/resources.html.
13For example, UKRI ‘expects research data arising from its funding to be made as open as possible and as restricted
as necessary’ and sets out a range of principles and policies in support of this aim: https://www.ukri.org/manage-
your-award/publishing-your-research-findings/making-your-research-data-open/.
14For example, if we assume the politics of active users of Twitter is reflective of the wider population’s politics, then
we may be misled.
15Some issues in the governance of happenstance data are explored in The DELVE Initiative, Data Readiness: Lessons
from an Emergency. 2020; DELVE Report No. 7. Published 24 November 2020. See https://rs-delve.github.io/reports/
2020/11/24/data-readiness-lessons-from-an-emergency.html.
16For example, the UK Government set out an ambition to unlock the value of data through enhanced data
sharing in the National Data Strategy. 2020 UK Government, National Data Strategy. See https://www.gov.uk/
government/publications/uk-national-data-strategy/national-data-strategy#data-2-1 (accessed 11 April 2024).
17Available at: https://www.go-fair.org/fair-principles/ (accessed 11 April 2024).
18For example: Bano M, et al. 2023 Investigating responsible AI for scientific research: an empirical study. arXiv
preprint. https://doi.org/10.48550/arXiv.2312.09561.
19For example, Jordon et al summarize how synthetic data do not guarantee privacy and may distort the infor-
mation represented in real-world datasets. Jordon J. et al. 2020 Synthetic data – why, why, and how? Report
commissioned by the Royal Society. See https://royalsociety.org/-/media/policy/projects/privacy-enhancing-technol-
ogies/Synthetic_Data_Survey-24.pdf (accessed 11 April 2024).
20See, for example, the Born in Scotland Data Trust: https://warwick.ac.uk/fac/soc/law/research/projects/scotland-
data-trust/ (accessed 11 April 2024).
21Android is based on Linux; OSX is based on FreeBSD.
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