

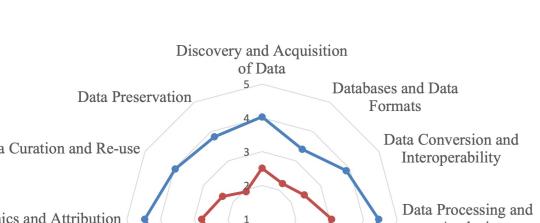
From Theory to Practice

Embedding RDM Competencies into Data Management Plans

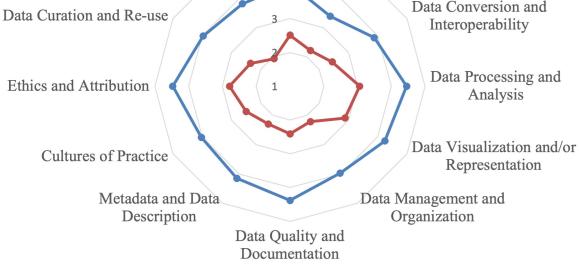
LIBER Conference 2024,
July the 5th, Limassol, Cyprus
Jukka Rantasaari
Head of Library Services, University of Turku
Doctoral Researcher, Åbo Akademi University

Sound Research Data Management (RDM) – What's the Point?

- Maintains credibility and reproducibility of research
- Helps researchers manage data efficiently
- Supports rigorous scientific methods
- Promotes sharing and collaboration
- Contributes to societal trust in scientific findings


Journey of RDM Competencies

Starting with Interviews, Progressing Through Training, and Assessing Outcomes


Doctoral Students' RDM Skill Gaps

- Comprehensive planning and documentation of research data management (RDM)
- Understanding RDM's importance for research quality
- Legal and ethical aspects of data handling

--- Perceived Current Competence

─Importance of the Competence

Basics of Research Data Management (BRDM) (3 ECTS)

CLINICAL HEALTH SCIENCES	SURVEY RESEARCH	QUALITATIVE RESEARCH	NATURAL SCIENCES	TEACHERS	
Backgrou	Head of library services; Data librarian; Grant writer				
Research plan: Objective; design; implementation; expected results	Research plan: Objective; design; implementation; expected results	Research plan: Objective; design; implementation; expected results	Research plan: Objective; design; implementation; expected results	Researchers; Lectors; University teachers	
	Self-study module; Data librarian				
IPR, agreemen (in Fir	ts and licenses nnish)	IPR, agreem (in	Head of legal affairs unit; Assistant legal counsel; Data librarian		
Data p privacy notice (in Fir		Data privacy notice; risk (in	Data protection officer; Data archive specialist		
RedCap: building a form based database	RedCap: NVivo: RedCap: database building a survey form organizing and coding data building a form based database			Head of biostatistician team; Lector	
	IT system architect				
	Data librarian				
	Module teachers				
DMP: returning and peer-reviewing	DMP: returning and peer-reviewing	DMP: returning and peer-reviewing	DMP: returning and peer-reviewing	Head of library services; Data librarian	
	Head of library services				

Assessing the Results

Self-assessment of the learning

- Rating RDM competencies
 - Scale: 1=No competence; 4=very competent
- Giving course and module-based feedback
 - What are the three things you learned?
 - How do they change you practices?

Assessment of the DMPs by the Teacher

- Rating Data Management Plans (DMPs)
 - Finnish DMP Evaluation Guidance (FDEG)
 - Scale: 0=Poor; 2=Excellent
- Content analysis of RDM best practices applied in DMPs

Example of the FDEG's Assessment

Criteria

3. Documentation and metadata

3.1 How will you document your data in order to make the data findable, accessible, interoperable and re-usable for you and others?

Evaluation guidance 2021

Excellent

- Clearly outlines the documentation needed to verification and enable data re-use.
- · Lists the metadata standards used for each data type.
- Describes how the documentation protocol is agreed (and documented), if no standard is available for a data type.
- Refers to documentation requirements of a data repositories/archives planned to use.
- Outlines who is/are responsible for the documentation during the data lifecycle (collection, analysis, storing, publishing, etc.)

Satisfactory

- Clearly outlines the documentation needed to to verification enable data re-use.
- Indicates how the data will be organised during the project (for example naming conventions, version control strategy and folder structures).
- Mentions common data documentation elements like, a 'readme' text file, file headers, code books, lab notebooks.

Poor

- Provides little or no details on the metadata that will accompany the data.
- Provides no information, or only a very vague mention of documentation, without providing any detail or explanation.

Recommended RDM Best Practices

Category	Definition				
Controller	Data controller named				
Data table	Data type specific classification included in a DMP				
Detailed descriptions	Descriptions of RDM practices are detailed				
Funder's policy	Explained funder's or publisher's data sharing policy				
Legal basis	Stated legal basis for handling personal data				
License for reuse	Named a license for data reuse				
Open data	At least part of the data will be opened				
Open metadata	Metadata will be opened				
Ownership	The ownership is clearly described and justified				
Permission	Permission asked for data sharing and reuse				
Resources	Evaluated and described resources needed				
Secure storing	Used only secure storing of personal data				
Storing by types	A data type specific storing platform				
Usage rights	Specified collaborators' different rights of use				
Why closed	If not shared the data, justification mentioned				

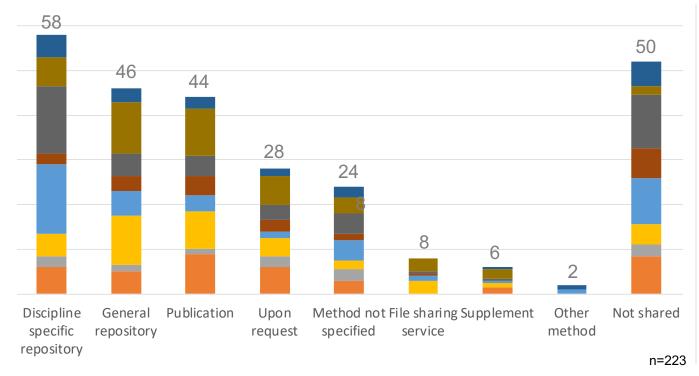
Variations in Data Management Plans (DMPs)

Data Table: An Example

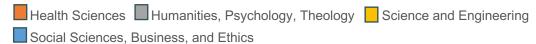
Data type and source	File format	Personal or sensitive data	Ownership and agreements	Metadata documentatio n	Storage during project	Sharing data after the project	Long-term archiving	Estimated size
Lab notes (Data produced)	.doc .txt .pdf	Yes. Subject to IPR check	PI and group	Programme generates metadata by itself	Electronic lab notebook (eLabJournal)	Project team	Discarded after 15 years	< 10 MB
RNA sequences (Data produced)	raw: FASTA, BAM, .xlsx	no	PI	Readme.txt	UTU's network drive and cloud	European Nucleotide Archive	no	< 1 GB
MRI images (Data reused)	DICOM, .nii, .tiff	Yes, record keeper: xx	PI	Readme.txt	Database x at TYKS, backup	NITRC after anonymization	no	< 1 GB
Question-naire forms (Data collected)	Paper forms	Yes, record keeper: xx	PI	Readme.txt	Locked filing cabinets in Pl's office	No, metadata shared in Zenodo/Etsin	Discarded 5 years after publication	

Differences Between DtDMPs and Prose DMPs

Differences were significant


- Detailed descriptions
- Usage rights specified
- Permission for sharing
- Data controller identified
- Reason for withholding
- Data type specific storing
- Ownership defined

Differences were insignificant


- Funder's policy
- Legal basis
- License for reuse
- Open data
- Open metadata
- Resources
- Secure storing

Sharing Methods

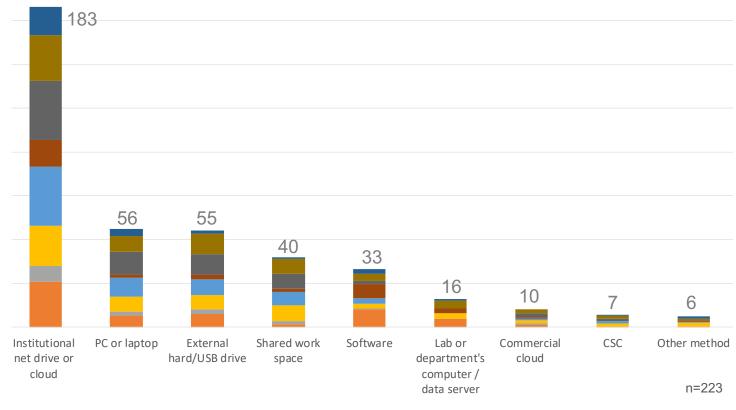
Disciplines

BRDM Course Tracks

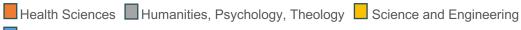
Discipline-specific Repositories:

- Preferred by 26% overall.
- Dominant in social sciences, business, economics, and survey research.

Generalist Repositories:


 Chosen by ~40% in science and engineering.

Publication as Sharing Method:


- Common in STEM and natural sciences (30%).
- Less usual in other fields (10%).

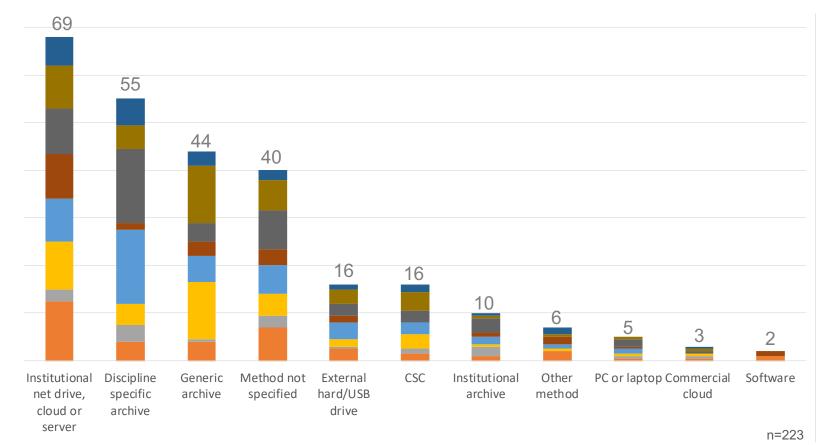
Storing Methods

Disciplines

Social Sciences, Business, and Ethics

BRDM Course Tracks

Institutional Net Drive or Cloud:


- Utilized in 82% of Data Management Plans (DMPs).
- Backups on other devices also common.

Discipline/Method-Specific Preferences:

- Natural science researchers often used external drives as a secondary option.
- Health science and clinical method users favoured data collection or analysis software.

Preserving Venues

Disciplines

Social Sciences, Business, and Ethics

BRDM Course Tracks

Institutional Platforms:

 Predominantly used by 40-50% of health sciences and clinical method users.

Discipline-Specific Archives:

- Chosen by 30-40% of humanities and social sciences researchers.
- Popular among those using qualitative or survey methods.

Generalist Archives:

- Preferred by nearly 40% of science and engineering researchers.
- Common among natural science method users.

Embedding RDM Key Competencies Into Data Management Plans

Assessing the Results

Self-assessment of the learning

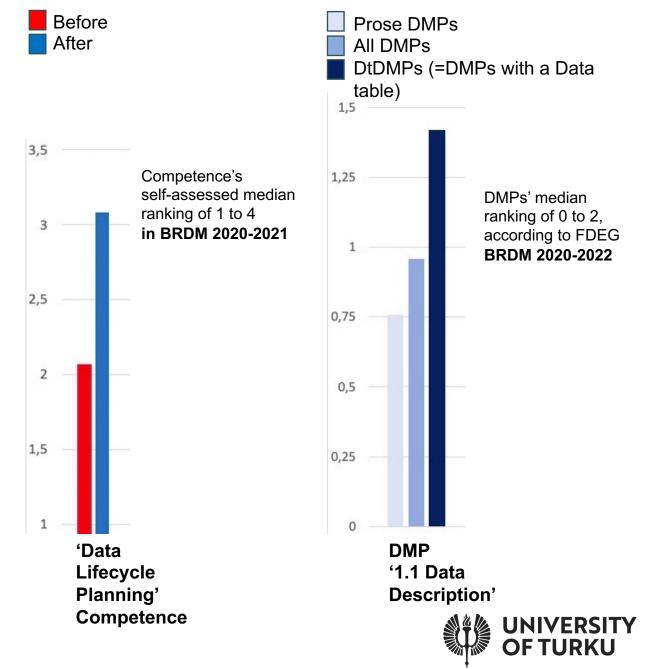
- Rating RDM competencies
 - Scale: 1=No competence; 4=very competent
- Giving course and module-based feedback
 - What are the three things you learned?
 - How do they change you practices?

Assessment of the DMPs by the Teacher

- Rating Data Management Plans (DMPs)
 - Finnish DMP Evaluation Guidance (FDEG)
 - Scale: 0=Poor; 2=Excellent
- Content analysis of RDM best practices applied in DMPs

Strengthening 'Data Lifecycle Planning' Proficiency

Self-assessment and Feedback


 Enhanced research quality via detailed DMPs using DMP-Tuuli, meeting ethical and funder standards.

DMP Assessment

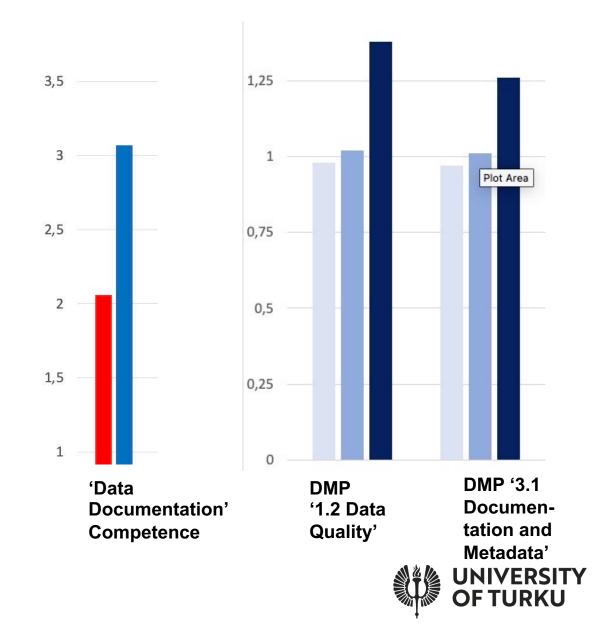
- DMPs with Data Tables (= DtDMPs) outperformed prose DMPs in quality.
- DtDMPs contained more detailed RDM descriptions, aligning with FAIR principles.

Next Steps

 Incorporating a data table in all DMPs to enhance data lifecycle descriptions.

Enhancements in 'Data Documentation'

Self-assessment and Feedback


 Highlighted importance of detailed, clear records for data sharing, reuse, and preservation.

DMP Assessment

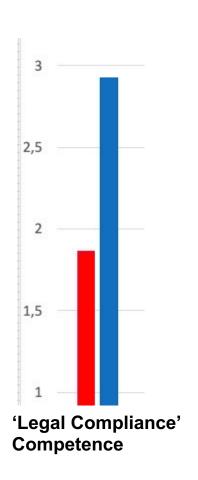
- DtDMPs scored highly: 1.38 for Data Quality, 1.26 for Documentation.
- Structured descriptions in data tables boost documentation quality and FAIR compliance.

Next Steps

 Improve prose DMPs to enhance comprehensive and FAIR data documentation.

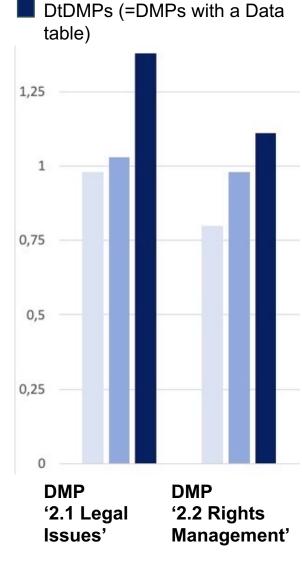
Advancements in 'Legal Compliance'

Self-assessment and Feedback


 Gained detailed knowledge of IP rights, GDPR, anonymization, licensing, and consent.

DMP Assessment

- DtDMPs scored higher on legal issues (1.38) and rights management (1.11) compared to prose DMPs.
- Demonstrated better handling of legal rights and personal data; formal data sharing methods enhanced license naming.


Next Steps

 Enhance inclusion of data sharing policies, permissions, and ownership justifications in prose DMPs.

Before

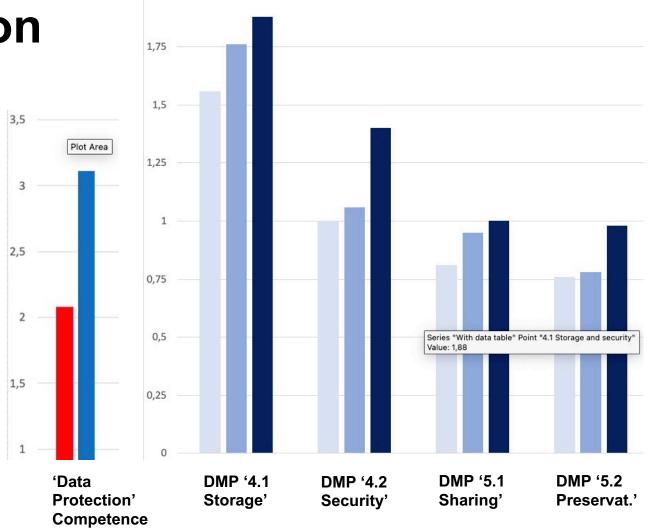
After

Prose DMPs

All DMPs

Enhancing 'Data Protection Strategies'

Self-assessment and Feedback


 Participants learned about secure data storage, metadata importance, and applying FAIR principles.

DMP Assessment

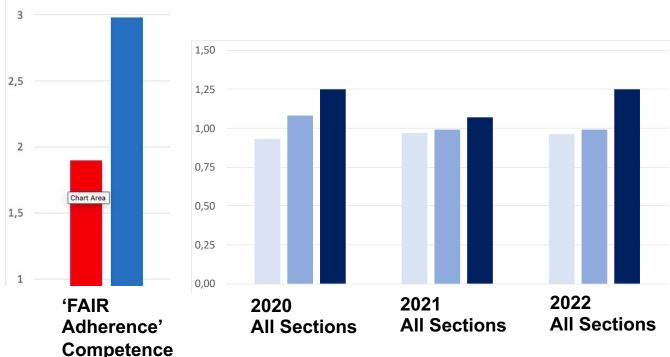
- DtDMPs scored higher, demonstrating better expertise in secure data handling.
- Stressed importance of encryption, choosing right storage solutions, and integrating FAIR principles.

Next Steps

 Address gaps in adherence to funders' policies, data rights management, and permissions handling.

Advancements in 'FAIR Adherence'

Self-assessment and Feedback


 Emphasized learning on metadata, data preservation, and open data practices.

DMP Assessment

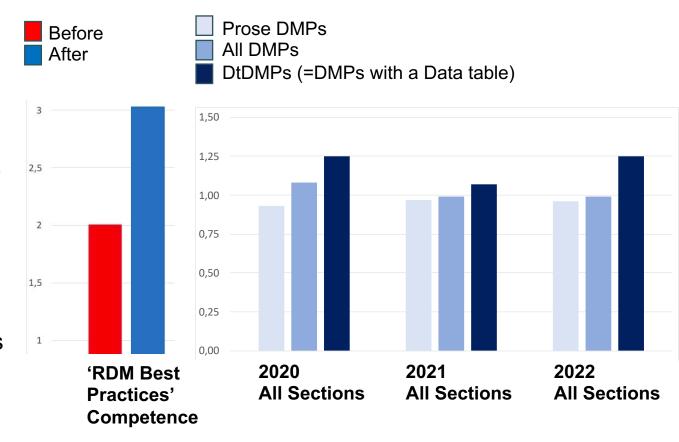
- DtDMPs vs. Prose DMPs: Median FAIR scores from 1.07 to 1.25 vs. 0.93 to 0.97 across years.
- Strong adoption of 'Findable' and 'Accessible' principles in DtDMPs, with detailed descriptions enhancing FAIR principles

Next Steps

 Focus on clarifying data sharing permissions and documenting data processing in prose DMPs.

Enhanced Proficiency in 'RDM Best Practices'

Self-assessment and Feedback


 Enhanced skills in structured data management, robust documentation, and secure storage.

DMP Assessment

- DtDMPs outperformed prose in adherence to RDM best practices.
- Stronger formal data sharing methods and clearer responsibilities distribution.

Next Steps

 Address the gap in budgeting RDM in DMPs by incorporating workload and cost estimates for RDM activities.

Differences in Relation to Previous DMP Content Analyses

- Enhanced use of the institutional network drives and cloud services.
- Trend towards formal data sharing channels.
- Lower intent for data sharing
- Division of labour for data management tasks.
- Better identification and description of different data types and their needed actions through a data table.
- DMPs frequently fail to mention funders' or publishers' data sharing policies

Recommendations

- **Researchers**: Adopt DMP evaluation criteria, such as FDEG, and structured data tables to enhance management and clarity of research data.
- **Institutions**: Use the evaluation criteria to assess DMP strengths/weaknesses, customizing support and training for researchers.
- Educators: Integrate the evaluation criteria into RDM training to standardize DMP evaluations and improve training impact.
- Funders & Publishers: Implement the requirements of the evaluation criteria for DMPs to ensure transparency and high data management standards.
- All Stakeholders: Promote evaluation framework adoption to standardize and elevate research data management practices.

References

Aalto, S., Ahokas, M., Friman, J., Fuchs, S., Korhonen, T., Kuusniemi, M. E., Laakso, K., Lennes, M., Manninen, S., Ojanen, M., Rantasaari, J., Virtanen, M. E., Xu, Q. (2021) Finnish DMP evaluation guidance + General Finnish DMP guidance. [Working paper]. Zenodo. https://doi.org/10.5281/zenodo.4729831

Rantasaari, J. (2021). Doctoral students' educational needs in research data management: Perceived importance and current competencies. International Journal of Digital Curation, 16(1), 36. https://doi.org/10.2218/IJDC.V16I1.684

Rantasaari, J. (2022). Doctoral students' research data management competencies based on the quality of their data management plans. In Proceedings of the IATUL Conferences (Vol. 42, pp. 1–9). Perth. Retrieved from https://docs.lib.purdue.edu/iatul/2022/clr/4

Rantasaari, J. (2022). Multi-stakeholder research data management training as a tool to improve the quality, integrity, reliability and reproducibility of research. LIBER Quarterly: The Journal of the Association of European Research Libraries, 32(1), 1–54. https://doi.org/10.53377/LQ.11726

Rantasaari, J. (2024). Assessing quality variations in early career researchers' data management plans. International Journal of Digital Curation, 18(1), 29. https://doi.org/10.2218/IJDC.V18I1.873

Rantasaari, J., & Kokkinen, H. (2019). Closing the skills gap: The basics of the research data management (BRDM) course: Case University of Turku. In Proceedings of the IATUL Conferences (pp. 1–8). Perth: 2019 IATUL Proceedings. Retrieved from https://docs.lib.purdue.edu/iatul/2019/fair/5/

Thank you!

jukka.rantasaari@utu.fi