
Validating and monitoring bibliographic and

citation data in OpenCitations collections

Ivan Heibi1,2†, Silvio Peroni1,2†, Elia Rizzetto1†

1Research Centre for Open Scholarly Metadata, Department of
Classical Philology and Italian Studies, University of Bologna, Via

Zamboni, 32, Bologna (BO), 40126, Italy.
2Digital Humanities Advanced Research Centre (/DH.arc), Department
of Classical Philology and Italian Studies, University of Bologna, Via

Zamboni, 32, Bologna (BO), 40126, Italy.

Contributing authors: ivan.heibi2@unibo.it; silvio.peroni@unibo.it;
elia.rizzetto2@unibo.it;

†These authors contributed equally to this work.

Abstract

Purpose: The increasing emphasis on data quantity in research infrastructures
has highlighted the need for equally robust mechanisms ensuring data qual-
ity, particularly in bibliographic and citation datasets. This paper addresses the
challenge of maintaining high-quality open research information within OpenCi-
tations, a community-guided Open Science Infrastructure, by introducing tools
for validating and monitoring bibliographic metadata and citation data.
Methods: We developed a custom validation tool tailored to the OpenCita-
tions Data Model (OCDM), designed to detect and explain ingestion errors from
heterogeneous sources, whether due to upstream data inconsistencies or inter-
nal software bugs. Additionally, a quality monitoring tool was created to track
known data issues post-publication. These tools were applied in two scenarios:
(1) validating metadata and citations from Matilda, a potential future source,
and (2) monitoring data quality in the existing OpenCitations Meta dataset.
Results: The validation tool successfully identified a variety of structural and
semantic issues in the Matilda dataset, demonstrating its precision. The monitor-
ing tool enabled the detection of recurring problems in the OpenCitations Meta
collection, as well as their quantification. Together, these tools proved effective
in enhancing the reliability of OpenCitations’ published data.
Conclusion: The presented validation and monitoring tools represent a step
toward ensuring high-quality bibliographic data in open research infrastructures,

1

ar
X

iv
:2

50
4.

12
19

5v
1

 [
cs

.D
L

]
 1

6
A

pr
 2

02
5

though they are limited to the data model adopted by OpenCitations. Future
developments are aimed at expanding to additional data sources, with particular
regard to crowdsourced data.

Keywords: bibliographic metadata, citation data, opencitations, data validation

1 Introduction

In recent years, significant focus and effort have been spent on gathering as much
data as possible —a period we, as scholars, have rephrased as the Big Data era [1].
These dynamics have characterised several scholarly disciplines, research and industrial
contexts. We have been involved in retrieving and organising as much data as possible,
sure that the available quantity of such information is one of the most prominent and
essential characteristics we should care of when working with data-intensive processes,
thus preferring big volumes of data over small samples of good quality information.

Such a view of preferring quantity over quality is a debated theme in several
contexts, recently including research assessment exercises. Indeed, several initiatives
around this topic, such as the Coalition for Advancing Research Assessment (CoARA,
https://coara.eu/) [2], have pushed a lot for the use of quality over quantity in
research assessment, leaving the quantitative dimension as a possibility for supporting
responsibly peer-reviewed evaluation.

However, the focus on quality concerns the evaluation processes and the ground
data used to inform them. Even when considering the responsible use of quanti-
tative indicators in this context, there is a clear push for adopting open research
information –see the Barcelona Declaration on Open Research Information (DORI,
https://barcelona-declaration.org/) [3] –that, in particular in the context of research
assessment, enables to inform appropriately transparent and high-quality assessment
processes using “highest quality data” [4]. Thus, the open infrastructures involved
in this context, i.e. shared digital research infrastructures designed to support data-
driven science while adhering to FAIR (Findable, Accessible, Interoperable, Reusable)
principles [5], have the responsibility to ensure high-quality and reliable data validated
via automated and manual checks entailed by adopting robust data management prac-
tices [6]. All these aspects have been considered for years in the ingestion processes
and quality checks introduced and implemented at OpenCitations.

OpenCitations is a non-for-profit and community-guided Open Science Infras-
tructure compliant with the Principles for Open Scholarly Infrastructures (POSI,
https://openscholarlyinfrastructure.org/) [7], dedicated to the gathering and publica-
tion of open bibliographic metadata and citation data, made available as complete
dumps in several formats and programmatically accessible via appropriate REST
APIs. OpenCitations provides two main collections: OpenCitations Index [8], storing
citations links between scholarly bibliographic resources, and OpenCitations Meta [9],
storing the basic bibliographic metadata (title, authors, year of publication, publi-
cation venue, publishers, identifiers) of the citing and cited entities involved in the
citations available in the OpenCitations Index. These datasets are derived from diverse

2

sources –which currently (as of 14 April 2025) include Crossref [10], DataCite [11],
NIH Open Citation Collection [12], OpenAIRE [13, 14], and the Japan Link Centre
[15] –and such primary data are reshaped according to the OpenCitations Data Model
(OCDM) [16] via an established ingestion workflow [8, 17].

However, ingesting large volumes of data from heterogeneous sources introduces
potential errors and inconsistencies, which we should identify and explain to devise
processes to correct them and, thus, improve the quality of the data. These errors fall
into two broad categories:

• errors in primary sources, which may arise from human inaccuracies or software
bugs in the originating systems;

• issues in the OpenCitations ingestion software due to bugs in the conversion and
ingestion processes implemented within the infrastructure.

The implemented workflow devised at OpenCitations automatically addresses
many of the problems arising from the ingestion process, either by sanitising invalid
data or discarding them where automatic correction is not feasible. However, there
still remain challenges that must be solved by fixing bugs in the core components
of the ingestion process (to avoid its repetition) and by correcting the current prob-
lems in the published data either by developing and running ad hoc computational
tools or by curating the identified issues manually using appropriate interfaces (e.g.
HERITRACE [18]).

A preliminary validation process and post-publication monitoring tool are essential
to identify and understand incorrect data, minimise information loss during ingestion,
and ensure the accuracy of the final datasets. To meet these objectives, and by extend-
ing the preliminary insights introduced in [19], OpenCitations has developed a custom
validation tool presented in this article, which is designed to provide the precision and
granularity necessary for addressing the unique requirements of the OCDM. This val-
idation tool is accompanied by a tool for monitoring the quality of data published in
the two OpenCitations collections to track the existence of known errors in the data
and help implement effective curation, prevention and correction strategies. We show
the application of both tools to check the validity of another source that OpenCita-
tions will consider in the future, i.e. Matilda [20], and to identify and monitor existing
issues in the data available in OpenCitations Meta.

The rest of this paper is structured as follows. Section “Material and Methods”
analyses the case study and the data features involved and describes the methodology
followed to develop viable solutions for validating bibliographic metadata and citation
data and monitoring their quality. Section “Implementation” provides more technical
details on the implementation of the software components. Section “Applicative Sce-
narios” illustrates the application of the implemented software considering two use
cases, citations and metadata provided by Matilda (for data validation) and the data
currently in OpenCitations Meta (for quality monitoring). Section “Related Works”
discusses other related work about the quality assessment of RDF data. Finally, Section
“Conclusions” sums up the overall work and sketches out some future developments.

3

2 Material and Methods

This section presents an overview of OpenCitations’ ingestion workflow and describes
the proposed methodology for pre-ingestion data validation and post-ingestion quality
assurance.

2.1 The data and the current ingestion workflow

In the OpenCitations Index , citations are represented as first-class data entities,
meaning that each citation is represented as an entity in its own right, representing
a directed link between two other entities (publication A cites publication B) with its
properties, including: citing entity, cited entity, citation creation date, and citation
timespan (i.e. the difference in days between the date of publication of the citing entity
and the date of publication of the cited entity). All the data in OpenCitations Index
is collected from raw citation data openly provided by other external sources, and it
is then published under a CC0 waiver. The current (as of 14 April 2025) sources are
Crossref [10], DataCite [11], the National Institute of Health Open Citation Collection
(NIH-OCC) [12], OpenAIRE [13], and the Japan Link Center (JaLC) [15]. The meta-
data of the publications involved as either citing or cited entities in the OpenCitations
Index are stored in OpenCitations Meta [9]. For each publication, this collection pro-
vides details including their persistent identifiers (PIDs) for the publication (e.g. DOI),
its title, the publication type (e.g. journal article, book, dataset, etc.), the publication
date, the venue and its PIDs, the page interval, the issue and volume numbers, and
the name and PIDs of the agents involved in the publication, i.e. authors, editors and
publisher.

Gathering citation data and bibliographic metadata from diverse primary sources
and unifying them into the OpenCitations Index and the OpenCitations Meta poses
significant challenges since each source represents the data in its own way, and some
information might overlap or differ across the sources. To overcome this challenge, a
workflow has been developed to reshape the gathered data according to the OpenCi-
tations Data Model (OCDM) [16] and then ingest it into the collections. The OCDM
is a data model built by reusing existing ontologies for describing information in the
scholarly bibliographic domain and essentially consists, in the scope of data validation
and error detection, of the fundamental set of rules defining the correct relationships
and properties of all entities in OpenCitations Meta and OpenCitations Index. The
workflow currently implemented for making bibliographic metadata and citation data
coming from external sources OCDM-compliant and ingesting it into OpenCitations’
collections consists of three steps [8]:

1. Source Preprocess. This step reshapes the data by implementing a metadata
crosswalk from the diverse data models used by original sources to the OCDM,
managing the differences in information content, structure and representation. A
central operation in this phase is the normalisation and validation of external PIDs,
such as DOIs for publications or ORCIDs for authors and editors.

The output of the software dedicated to this step, the OpenCitations Data
Sources Converter [21], are two OCDM-compliant tables which are used in the
two following steps: one storing the bibliographic metadata for each publication

4

involved in a citation (where each row represents a publication and columns store
the values for supported metadata content), the other storing citations (where each
row represents a citation and two columns store the PIDs of the citing and the
cited publication, whose scheme depend on the original source, e.g. citations from
Crossref are represented as DOI-to-DOI citations).

2. Meta Process. This step populates the OpenCitations Meta collection. Starting
from the table produced in the first step, the bibliographic metadata to ingest is
automatically curated by deduplicating records (i.e. table rows) that feature the
same PID as another record and normalising and correcting their values. Records
representing entities that had been registered in OpenCitations Meta in previous
ingestions can be used to enrich the already available metadata for those entities
or to merge them into a single entity (in the case the external PIDs appearing
to pertain to a single entity in the record are instead linked to separate entities
in OpenCitations Meta). Each entity in OpenCitations Meta is represented by
the OpenCitations Meta Identifier (OMID), a PID that is minted and assigned to
the entity in the moment of its generation: this is a crucial feature, as it allows
the following step of the workflow to uniquely identify the publications linked by
citations without relying on external identifiers.

The output of this step, whose complete methodology and implementation are
detailed thoroughly in [9], is the OpenCitations Meta dataset itself, stored both in
a database and as dump files. Notably, the software responsible for the operations
mentioned above also generates and stores in RDF files provenance information for
each entity, keeping track of the agent that created, modified, merged or deleted it,
the time of the action and the primary source providing the data.

3. Index Process. This step processes the citation tables from the Source Prepro-
cess phase where each citation is represented as a link between two external PIDs
(e.g., DOI-to-DOI, PMID-to-PMID). By making use of a mapping between these
external identifiers and the OMID of the entity they have been associated with in
the previous step (Meta Process), it converts these links into OMID-to-OMID cita-
tions, each of which is uniquely identified as a first-class entity by an Open Citation
Identifier (OCI). Similarly to step 2, the process output consists of the OpenCita-
tions Index dataset, with citation data stored in a database and as dump files, and
provenance information saved in files only.

The workflow briefly described above is currently only applied to data from author-
itative sources, such as Crossref or DataCite, which structure their data according to
a defined data model. While this workflow is undoubtedly useful –particularly because
it allows for the ingestion of a large volume of data with each execution –its applica-
tion is effectively limited to data sources where implementing the metadata crosswalk
from the source data model to the OCDM (as outlined in the Source Preprocess step)
is feasible or advantageous. Since this process requires notable effort to manage the
idiosyncratic complexities of each source, creating a custom data conversion system
for each source may not be an applicable strategy, especially for sources that cannot
provide certain conditions that facilitate this process (e.g. a defined data model, clear
documentation of the data structure, etc.). Nonetheless, there are organisations and
individuals who, despite lacking these characteristics, hold high-quality bibliographic

5

data that is not yet easily accessible or reusable. Ingesting this data into collections
like those of OpenCitations is crucial to making a large number of up-to-date citations
and bibliographic metadata openly available.

As has been already pointed out by OpenCitations [22], an effective solution to
broaden the number of open scholarly bibliographic data can be represented by crowd-
sourcing the data itself: users would be able to directly submit, via a dedicated service,
tables containing citations and metadata to be ingested into OpenCitations Index and
OpenCitations Meta respectively. Users would need to submit tables that are already
OCDM-compliant and formatted to be natively processed by the relevant OpenCita-
tions software (i.e. equivalent to the output of the current workflow’s first step, Source
Preprocess); in creating them, they should follow the guide provided in two reference
documents [23, 24], in order for these tables to be interpreted correctly in the Meta
Process and Index Process steps of the workflow. As the tabular documents obtained
this way would not be built via a controlled internal process, validating them becomes
imperative to ensure data quality. To fulfil this need, we have developed a custom
validation tool described in the following subsection.

2.2 Pre-ingestion Validation

The tabular format has been chosen for user submissions in that it is approachable
even by scholars, researchers and professionals with little coding skills, yet the inher-
ent complexity of the relationships and information expressable with the OCDM can
fit into such a format only following precise rules, defined in [23, 24]. Following the
nomenclature in these reference documents, we will henceforth refer to the table storing
metadata as META-CSV and to the table storing citations as CITS-CSV.

In META-CSV, each row represents a bibliographic resource, i.e. a publication,
and the eleven columns specify: the identifiers associated with the resource; the title;
the surname, name, and identifiers of its authors and editors; the publication date;
the venue (i.e. another bibliographic resource containing the represented document,
e.g. the journal containing the article represented in the row); the volume of the venue
containing the document; the issue of the venue containing the document; the page
range; the type of publication; and the name and identifiers of the publisher.

In CITS-CSV, each row represents one citation, and the four columns store the
values for the identifiers and the publication date of the citing and the cited bibli-
ographic resource. META-CSV and CITS-CSV tables have a layered structure that
adds complexity to their validation. Beyond their tabular organisation of rows and
columns, field values within each cell can consist of either single data units or collec-
tions of multiple data units separated by specific delimiters. These individual units,
termed “items”, represent the minimal “portion” used by the document to define a spe-
cific piece of information and, therefore, must be validated individually. For example,
in CITS-CSV, the identifier fields for citing and cited resources may contain multi-
ple items, while in META-CSV, fields for identifiers, authors, venues, publishers, and
editors may similarly admit multiple items.

Adding to this complexity, in META-CSV, some fields contain items composed of
smaller components, such as names and identifiers of entities (e.g., authors, editors,
publishers, and venues). Each component requires distinct validation rules based on

6

Table 1 Two sample table cells of META-CSV, storing the surnames, names and identifiers of the
authors of a bibliographic resource and the publication date of the bibliographic resource.

... author pub date ...

... Peroni, Silvio [orcid:0000-0003-0530-4305 viaf:309649450];
Shotton, David [orcid:0000-0051-5506-523X]

2023-03-13 ...

Fig. 1 The abstract representation of the internal structure of the table cell containing the data
for the author of a bibliographic resource (see Table 1). The cell contains two items, each of which
corresponds to the entity of an author; each items has internal components of different kinds (the
plain text of the surname and name, and the series of identifiers).

Fig. 2 The abstract representation of the internal structure of the table cell containing the data
for the publication date of a bibliography resource (see Table 1). The cell contains only one item,
which corresponds to the value of the publication date. The publication date field always has a value
containing a single item.

its type, leading to diverse validation requirements for the content of a single field.
Table 1, Figure 2, and Figure 1 can be used to understand the abstract representation
of the structure of the table.

Validation rules for the tables encompass both formatting/syntactic and content
criteria. Syntactic rules are defined in the specifications to write well-formed docu-
ments [23, 24] and ensure proper data types, formats, and required fields. The other
rules extend beyond syntax, addressing requirements such as the existence of refer-
enced identifiers in relevant registries and the correctness of the relationships expressed
in the table, also for those requirements that are not explicitly mentioned in the table
specifications (e.g. a META-CSV row corresponding to a bibliographic resource to

7

which a given type has been assigned may have only a certain set of values in the
identifier field to be compliant with OCDM).

At the beginning of the validator designing phase, we first identified all the applica-
ble validation rules for each of the two documents and grouped them into four different
categories: rules related to the format and syntax of the document as prescribed by
OpenCitations; rules based on the externally-defined syntax of PIDs (e.g. the valid
structure of a DOI value); rules verifying the existence of an entity in the real world;
and rules checking the relationships between the values. These categories have been
used to structure the validation process into four levels, applied sequentially to the
table elements:

1. Wellformedness. This step ensures the document complies with the syntactic rules
defined in [23, 24] to generate well-formed tables, e.g. supported identifier schemes,
correct date formats, etc. Errors at this level block further validation of affected
items.

2. ID Syntax. All PID values are checked against syntax rules defined by their issuing
organizations, ensuring formats such as the ones for DOI1, ORCID2, and PMID3

are correctly applied.
3. ID Existence. The existence of mentioned entities in the real world is verified

by using their associated identifiers as a proxy: PIDs are queried against official
databases to confirm they are actually registered as such.

4. Semantics. Applied only to META-CSV, this step verifies the consistency of the
relationships between data points (e.g. verifying that the PID associated with the
bibliographic resource represented in a row is compatible with the resource type).

The implementation of the validation process has been guided by the following
design principles:

1. Maximum granularity. Each document is validated by applying checks on its small-
est parts (in most cases items, but if applicable also sub-parts of an item) to
maximise granularity in the output and identify faulty table elements with high
specificity.

2. Maximum coverage at each execution. At each execution of the process, the entire
table is validated from start to end, i.e. without stopping the process if an error
is found: all detectable errors are collected during the process and returned as a
comprehensive collection in the output validation report. This process makes it
easier for users to correct errors, since they are enabled to potentially address all
issues in one correction cycle, avoiding repeated submissions.

3. Non-redundancy. A single item that has already failed a check is not validated
against the rest of the rules, as it will need to be modified by the user. This principle
only applies in cases where compliance with one rule is a prerequisite for compliance
with the other rules for the same item. Otherwise, i.e. if the outcomes of two checks
on the same item are mutually independent, both checks are executed straight away
(i.e. before the user intervenes with any corrections).

1https://www.doi.org/
2https://orcid.org/
3https://pubmed.ncbi.nlm.nih.gov/

8

The custom validator has been designed with the aim of providing a precise and
information-rich feedback on the validity status of the data that is both suitable
for programmatic use and human-readable. Machine-readability is essential for the
primary objective of discarding invalid data before ingestion automatically, and for
granting the possibility to use the validation output in other applications (e.g. for
double-checking internally generated documents in the Source Preprocess phase of the
ingestion workflow). Human-readability and user-friendliness are key to the fulfilment
of the other fundamental objective of the validator: providing users with a tool to
better understand how to create correct bibliodata tables.

The output is provided as a report listing all detected errors from a single execution
of the validation process. Each error includes:

• Position details: the exact location of all the single pieces of data involved in that
error (relative to the whole document) and whether the error regards a single item,
multiple fields, or multiple rows.

• Validation level : The validation level where the error occurred.
• Type of issue: Whether the issue is a blocking “error” or a non-blocking “warning”.
• Unique error label : A short label indicating the category to which each error instance

belongs, which can be used by a machine to process the output.
• User message: Natural language explanation of the error and its potential causes.

Particular attention has been given to finding a feasible way to express the position
of the error in the document, so that the specific data points involved in the error
could be retrieved and processed automatically, while at the same time grant the
user the possibility to exactly see the single parts of the document involved in the
error. Nonetheless, the format specially designed to indicate error positions reflects the
complexity of the internal structure of the table and can be cumbersome for humans
to read. To solve this limitation, we went further in the direction of user-friendliness
and paired the validator with a component entirely dedicated to the visualisation of
the validation report in a graphical interface. This solution allows users to grasp the
basic information about the errors more easily, visualising directly, on a new tabular
representation of the input document, where they are located and their explanation.

2.3 Post-ingestion data quality assurance

Managing large collections of bibliographic and citation metadata from diverse sources
requires a robust and systematic process to ensure data quality. Despite preven-
tive measures such as validation during ingestion, errors can persist or emerge over
time. To maintain data integrity, it is essential to monitor the correctness of ingested
data regularly, implement correction strategies, and evaluate the success of these
interventions.

A data monitoring tool has been developed for OpenCitations Meta and OpenCi-
tations Index to address this need. This tool systematically searches for and tracks
the presence of pre-identified and categorised errors in the data, providing actionable
insights to guide corrections and assess the outcomes of previous improvements.

9

As a preliminary step, all known errors existing in OpenCitations Meta and
OpenCitations Index have been collected and described via the use of a basic frame-
work, which enables us to keep track, for each error, of details like the assigned error
label, actual examples, a description of the issue, the interested collection, and any
strategy or programming solution to find actual data affected by the error.

From here, a subset of error types has been selected, including those reproducible
by querying the databases of the two collections, which are accessible online via the
SPARQL endpoint. This is because retrieving content by querying the databases for
a given pattern is much faster than other solutions, like the programmatic analysis of
the whole dump.

The monitoring process works by a simple logic: for each error, the data are tested
by trying to retrieve from the associated collection any results that fall within the
pattern representing it; if any result is retrieved, it means that there is wrong data
(i.e. not compatible with OCDM or at any rate not expected) and the test for that
particular error fails. The outcome of all the tests (i.e. whether it passed or not) is
gathered during the process and returned in the final output of the monitor, which
includes:

• general details about the execution of the process: the SPARQL endpoint URL of
the accessed database, the queried collection (i.e. either OpenCitations Meta or
OpenCitations Index), the date and time of the execution, the total running time,
the path of the configuration file used to specify which errors have been tested.

• the details for each single error: label, natural language description, retrieving
method (i.e. the exact SPARQL query), test result and details about the execution
of that single test, including its individual running time and execution errors in case
they were raised.

The monitoring tool has been designed with extendability, automation, and acces-
sibility in mind. Its modular architecture ensures that new error tests can be added
seamlessly, provided the errors can be represented through SPARQL queries. This flex-
ibility allows the system to adapt continuously as new types of errors are discovered
and defined.

To facilitate continuous oversight, the monitor can operate fully automatically,
with periodic, scheduled executions. Currently, the process runs every Monday for
both OpenCitations Meta and OpenCitations Index. Similarly to the validator, the
monitor prioritizes user-friendliness by presenting its results in both machine-readable
and human-readable formats. This dual representation supports diverse use cases, from
automated integration into workflows to manual examination of findings. Notably,
as part of the automated workflow, the human-readable results are used to update
a publicly accessible web page, offering full transparency into the latest monitoring
outcomes. The results can be viewed at: https://ocmonitor.opencitations.net/.

3 Implementation

This section presents technical details on the implementation of the methodology
described above.

10

Fig. 3 A screenshot of an example HTML page for the visualisation of a META-CSV document
validation report.

3.1 oc validator

The validator tool described in Section 2 has been implemented in a Python software
named oc_validator, available as a public repository4 under an ISC license and as
an installable library in PyPI5.

The main process is managed by a dedicated class, named Validator, that takes
as input the path to the table to validate (a CSV file that must be formatted as either
META-CSV or CITS-CSV) and the path to the directory where the output files will
be stored. As this interface only deals with one document at a time, another class
was added to enable the simultaneous cross-validation of both metadata and citation
data contained in two separate documents (also formatted as META-CSV and CITS-
CSV respectively), which simply wraps in two instances of Validator, one for either
document type.

As a first step of the process, the type of table is automatically determined, and
a specific method managing the related operations is called accordingly. Internally,
in fact, the processes for validating META-CSV and CITS-CSV are distinct, though
their inner workings are similar.

The validation process then iterates over all the table rows and columns (i.e. fields)
and, depending on the field name, elaborates the internal content of the cell (which is
initially interpreted as a single string) according to its abstract internal structure. The
appropriate validation rules are sequentially checked by executing specific functions
for each of the extracted items and their sub-components. Each of the four validation
levels has its corresponding class, and each validation rule of the level is checked by
a dedicated class method. In compliance with the design principle of non-redundancy
mentioned in the Material and Methods section, if an element fails a check it is not

4https://github.com/opencitations/oc validator
5https://pypi.org/project/oc-validator/

11

tested for the other validation rules that might apply to it, unless the latter are
independent of the first check’s outcome.

Whenever a check fails, a dictionary object is generated representing the error and
added to a list that will constitute the validation process output. An example of an
error object is represented below in the form of a JSON object:

{
” v a l i d a t i o n l e v e l ” : ” c sv we l l f o rmednes s ” ,
” e r r o r t yp e ” : ” e r r o r ” ,
” e r r o r l a b e l ” : ” dup l i c a t e b r ” ,
” va l i d ” : f a l s e ,
”message ” : ”The same b i b l i o g r aph i c r e s ou r c e i s be ing

repre s ent ed in more than one row . Please check a l l the
rows invo lved in the r ep r e s en t a t i on o f t h i s

pub l i c a t i on and un i fy them or remove the ext ra ones . ” ,
” p o s i t i o n ” : {

” l o c a t e d i n ” : ”row” ,
” t ab l e ” : {

”2” : {” id ” : [0 , 1]} ,
”3” : {” id ” : [0 , 1]}

}
}

}
When the end of the document is reached, and all the elements of the table have

been validated, the list containing the error object is stored in a JSON file consti-
tuting the machine-readable output of the process and is converted into a TXT file
summarising the latter, which consists of its human-readable version.

After the validation phase, the JSON output creates a graphical user interface as an
HTML page to visualise the validation outcome better. In the HTML document, the
integrated CSS styling and JavaScript code allow users to interact with the content.
The rows of the original document that contain one or more errors are presented in
an HTML table, where the location of the error is signalled by underlining exactly
the wrong content associated with it and accompanying it with a square. By clicking
on each square, the related faulty content is highlighted in all the involved locations,
while hovering on it with the cursor shows the explanation of the error. An example
the interface is provided as a static image in Figure 3.

3.2 oc monitor

The monitor tool has also been implemented in the Python software oc_monitor,
available as a public repository6 under an ISC license and as an installable library7 in
PyPI.

The central component in the monitor software is the JSON configuration file
that is passed as argument of the two separate classes that actually manage the

6https://github.com/opencitations/oc monitor
7https://pypi.org/project/oc-monitor/

12

process: MetaMonitor, in charge of looking for errors in OpenCitations Meta, and
IndexMonitor, looking for them in OpenCitations Index. The configuration file speci-
fies the URL of the SPARQL endpoint to interrogate and a list of objects representing
an error or an issue in the data. Each of these objects contains: a short label for the
issue; a textual description explaining the nature of the problem and possibly provid-
ing examples of faulty data; a flag to indicate whether the specific issue should be
verified at the execution of the monitoring process; and the actual test for the error, a

Fig. 4 A screenshot of an example HTML page showing the results of oc monitor. The test results
and the execution time values are for illustrative purposes only.

13

SPARQL query defining the pattern that would catch results if the error was present
in the collection.

MetaMonitor and IndexMonitor must each be passed the appropriate configu-
ration file to work properly, but their inner working is similar: for each test in the
configuration file, the SPARQL query is executed against the specified endpoint and
a report for the test is generated in the form of a dictionary. This object contains the
information specified in the configuration (label, description and query text) and a
boolean indicating whether the test passed or not. Moreover, details concerning the
execution are included: running time of the query8 and, in case execution errors were
raised, e.g. due to HTTP errors, the problem itself is reported too, providing also a use-
ful insight on the status of the system infrastructure at the moment of the attempted
connection to the server. An example of an object representing a test result is given
below:

{
” l a b e l ” : ” dup l i c a t e b r ” ,
” d e s c r i p t i o n ” : ”There i s at l e a s t one case o f mu l t ip l e

f ab i o : Express ion e n t i t i e s shar ing the same ID value
f o r any given scheme (e . g . the same DOI i s l i nked to 2
separa te j ou rna l a r t i c l e s , as in omid : br /061103623233
and omid : br /061602208852) . ” ,

”query ” : ”PREFIX da ta c i t e : <http :// pur l . org / spar / da t a c i t e
/>\nPREFIX l i t e r a l : <http ://www. essepuntato . i t
/2010/06/ l i t e r a l r e i f i c a t i o n />\nPREFIX fab i o : <http ://
pur l . org / spar / f ab i o />\n\nASK {\n ?br1 da t a c i t e :
h a s I d e n t i f i e r / l i t e r a l : ha sL i t e ra lVa lue ? l i t ;\n a
f ab i o : Express ion .\n ?br2 da t a c i t e : h a s I d e n t i f i e r /
l i t e r a l : ha sL i t e ra lVa lue ? l i t ;\n a f ab i o : Express ion
.\n FILTER(? br1 != ?br2) \n}” ,

”run ” : {
” g o t r e s u l t ” : true ,
” running t ime ” : 2 .4839844703674316 ,
” e r r o r ” : nu l l

} ,
” passed ” : f a l s e

}
The output of the monitoring phase consists of these objects, stored in a JSON file

with some general details such as the exact date and time of the execution and the
total running time.

As for the validator, the JSON output is used to create a more user-friendly visu-
alisation of the monitoring outcome, in this case simply by restructuring the content
into an HTML page.

8The execution of each test requires from less than a second to less than 5 minutes, depending on the
type of test and factors such as other ongoing processes on the working server, simultaneous network traffic,
etc. Especially considering the small number of tests, using the SPARQL endpoint is much faster than
processing the whole dump, currently comprising more than 4,8 billion triples for OpenCitations Meta and
more than 9 billion triples for OpenCitations Index.

14

Notably, OpenCitations has paired oc monitor with an automatisation pipeline
developed via GitHub Actions9 and available in the software’s repository: every Mon-
day, the monitor is run against both collections, and the latest results are added for
storage in the public repository and exposed on a public web page10. For an example
of such HTML page see Figure 4.

4 Applicative Scenarios

As a form of informal evaluation of the software, we focus on two distinct applica-
tive scenarios introduced in two complementary parts. The first part focuses on the
validation capabilities of the oc validator, assessed through the analysis of small data
dumps provided by Matilda, a bibliometric and bibliographic research tool developed
in the context of open science [20]. The second part evaluates the system’s behaviour
under realistic operational conditions by executing the oc monitor on the OpenCita-
tions Meta dataset. These two aspects provide a comprehensive assessment of both
functional correctness and runtime performance. Details of each evaluation phase are
presented in the following subsections and related material, including input data,
results, and code, are publicly available in [25].

4.1 oc validator –Matilda case study

Matilda [20] is a bibliometric and bibliographic research tool. It was designed to
overcome the limitations of traditional proprietary systems by integrating a wide
range of openly available data sources and supporting user-driven customization.
Matilda provides a flexible infrastructure for bibliometric analysis, capable of account-
ing for diverse document types, languages, and access models. Its development
reflects a broader shift toward openness, transparency, and accessibility in scholarly
communication.

As part of an ongoing collaboration with OpenCitations, Matilda has contributed a
collection of its bibliographic and citation data, dated September 2024, for integration
into the OpenCitations Meta and OpenCitations Index, respectively. This contribution
constitutes a concrete use case that is particularly well-suited for evaluation using the
oc validator tool introduced in this paper. The provided dataset of Matilda includes
a sample of 3,464 citations, such that each citation is defined by the identifier of the
citing and cited entity, and 5,101 bibliographic entities, such that each entity (row in
the dataset) is accompanied by its corresponding metadata.

As described in Table 2, the validation process identified the most frequent warn-
ing concerning the nonexistent identifiers for bibliographic resources (br id existence,
849 instances), followed by logically inconsistent page intervals (page interval, 664
instances), suggesting that the starting page appears to be greater than the end
page. A significant number of entries also presented a malformed page format
(page format, 522), which was categorized as an error due to its direct impact on the
consistency of the data. Additional issues included titles entirely in uppercase (upper-
case title, 60), and a less frequent but structurally critical errors involved duplicate

9https://github.com/features/actions
10https://ocmonitor.opencitations.net/

15

entries of responsible agents (duplicate ra, 23), incorrect formatting of agent repre-
sentations (people item format, 14), and malformed bibliographic resource identifiers
(br id format, 1). Although relatively limited, these final results still contain errors
that require attention. Lastly, a small number of cases involved unregistered respon-
sible agent identifiers (ra id existence, 5), indicating a need for closer control over
external identifier validation.

On the other hand, when analysing the citations provided by Matilda – Table 3,
the results identified a limited number of issues related to identifier validity. The most
common warning was the presence of unregistered bibliographic resource identifiers
(br id existence, 296 cases), followed by self-citations (self citation, 61 cases), which
may be legitimate but the rarity of these cases might suggest a further verification
over the given data. Only one instance of a malformed identifier (br id format) was
found, indicating strong adherence to syntax conventions by the Matilda sample.

These findings on the Matilda data, underscore the effectiveness of the OC Valida-
tor, particularly in identifying both high-impact errors and softer formatting issues,
thereby supporting the goal of improving metadata quality and consistency in scholarly
datasets.

4.2 oc monitor –OpenCitations Meta

Starting from the queries used in the automated workflow for monitoring data quality
issues in OpenCitations Meta –which are designed to return a boolean indicating the
presence or absence of an error at the time of execution –we developed a new set of
queries aimed at quantifying these previously identified issues. Specifically, for each
issue represented by a query, we retrieved the total number of affected resources in
the dataset.

The results of this analysis, conducted using the live triplestore data as of 11
April 2025, are presented in Table 4. The table includes only those tests that detected
the presence of actual data issues, reporting the corresponding number of resources
affected for each type of error.

These results reveal that, in most cases, the number of resources affected by each
issue is too large to be addressed manually. Nevertheless, these errors still represent
a relatively small proportion of the overall dataset. For instance, although there are
1,388,761 bibliographic resources in OpenCitations Meta that share a persistent identi-
fier with at least one other resource (as indicated by the duplicate br count label), this
accounts for only 1.1% of the total 121,302,680 bibliographic resources present in the
collection at the time of analysis. Similarly, the issue labelled duplicate agent count
indicates that 2,544,914 agent entities (such as authors, editors, or publishers) share
a persistent identifier with at least one other agent. Despite the large absolute num-
ber, these cases represent just 0.8% of the 333,356,609 total agent entities in the
dataset. Overall, this quantitative perspective helps to contextualize the severity and
prevalence of different types of data quality issues in OpenCitations Meta, supporting
more informed decisions regarding prioritization and potential remediation strategies
— whether automated or manual.

16

T
a
b
le

2
T
h
e
re
su

lt
s
g
en

er
a
te
d
b
y
th

e
oc

va
li
d
a
to
r,

d
et
a
il
in
g
th

e
ty
p
e,

d
es
cr
ip
ti
o
n
,
a
n
d
fr
eq

u
en

cy
o
f
er
ro
rs

a
n
d
w
a
rn

in
g
s
id
en

ti
fi
ed

in
th

e
m
et
a
d
a
ta

o
f
th

e
b
ib
li
o
g
ra
p
h
ic

re
so
u
rc
es

o
f
M
a
ti
ld
a
.

er
ro
r
la
b
el

er
ro
r
ty
p
e

m
es
sa
ge

#

p
ag
e
fo
rm

at
E
rr
or

T
h
e
va
lu
e
of

’p
a
g
e’

is
n
o
t
w
el
l-
fo
rm

ed
.
T
h
er
e
m
u
st

a
lw
ay
s
b
e
a

st
ar
ti
n
g
p
a
ge
,
fo
ll
ow

ed
b
y
a
n
h
y
p
h
en
,
fo
ll
ow

ed
b
y
th
e
en
d
p
a
g
e

..
.

5
2
2

d
u
p
li
ca
te

ra
E
rr
o
r

T
h
e

sa
m
e

re
sp
o
n
si
b
le

a
g
en
t

(a
u
th
o
r/
ed
it
o
r/
p
u
b
li
sh
er
)

is
re
p
or
te
d
m
o
re

th
a
n
o
n
ce

w
it
h
in

th
e
sa
m
e
ce
ll
.
P
le
a
se

re
m
ov
e

th
e
ex
tr
a
o
cc
u
rr
en
ce
(s
).

2
3

p
eo
p
le

it
em

fo
rm

at
E
rr
or

T
h
e
va
lu
e
re
p
re
se
n
ti
n
g
th
e
re
sp
o
n
si
b
le

a
g
en
t
en
ti
ty

is
n
o
t
w
el
l-

fo
rm

ed
.
T
h
e
en
ti
ty

fo
r
a
re
sp
o
n
si
b
le

a
g
en
t
is
re
p
re
se
n
te
d
b
y
th
e

n
am

e
of

th
e
p
er
so
n
/
o
rg
a
n
iz
a
ti
o
n
,
fo
ll
ow

ed
b
y
a
si
n
g
le
w
h
it
es
p
a
ce

an
d
on

e
o
r
m
o
re

a
ss
o
ci
a
te
d
id
en
ti
fi
er
s,

..
.

1
4

b
r
id

fo
rm

at
E
rr
or

T
h
e
va
lu
e
in

th
is

fi
el
d

is
n
o
t
ex
p
re
ss
ed

in
co
m
p
li
a
n
ce

w
it
h

th
e

sy
n
ta
x

o
f
O
p
en
C
it
a
ti
o
n
s

C
IT

S
-C

S
V
/
M
E
T
A
-C

S
V
.
E
a
ch

id
en
ti
fi
er

in
’c
it
in
g
id
’/
’c
it
ed

id
’
..
.

1

b
r
id

ex
is
te
n
ce

W
ar
n
in
g

T
h
e
ID

is
n
ot

re
g
is
te
re
d
a
n
y
w
h
er
e
a
s
a
p
er
si
st
en
t
id
en
ti
fi
er

fo
r

a
b
ib
li
o
gr
a
p
h
ic

re
so
u
rc
e,

i.
e.

it
d
o
es

n
o
t
ex
is
t.

8
4
9

p
ag
e
in
te
rv
al

W
ar
n
in
g

T
h
e
sp
ec
ifi
ed

p
ag
e
in
te
rv
a
l
se
em

s
to

b
e
im

p
o
ss
ib
le
:
th
e
st
a
rt

p
ag
e
a
p
p
ea
rs

to
b
e
g
re
a
te
r
th
a
n
th
e
en
d
p
a
g
e.

6
6
4

u
p
p
er
ca
se

ti
tl
e

W
ar
n
in
g

T
h
e
w
h
ol
e
ti
tl
e
o
f
th
e
p
u
b
li
ca
ti
o
n
is

u
p
p
er
ca
se
.
A
re

yo
u
su
re
?

P
le
as
e
d
ou

b
le
-c
h
ec
k
th
e
a
ct
u
a
l
ti
tl
e
o
f
th
e
p
u
b
li
ca
ti
o
n
.

6
0

ra
id

ex
is
te
n
ce

W
ar
n
in
g

T
h
e

ID
is

n
ot

re
g
is
te
re
d

a
s

a
p
er
si
st
en
t

id
en
ti
fi
er

fo
r

a
n
y

b
ib
li
o
gr
a
p
h
ic

re
so
u
rc
e,

i.
e.

it
d
o
es

n
o
t
ex
is
t.

5

17

Table 3 The results generated by the oc validator for citation data of Matilda, showing the types,
descriptions, and occurrences of errors and warnings detected.

error label error type message #

br id format Error The value in this field is not expressed in
compliance with the syntax of OpenCita-
tions CITS-CSV/META-CSV. Each identifier
in ’citing id’/’cited id’ . . .

1

br id existence Warning The ID is not registered anywhere as a persis-
tent identifier for a bibliographic resource

296

self citation Warning It seems that a circular citation is being rep-
resented: the bibliographic resource appears to
be citing itself.

61

Table 4 The results of oc monitor configured with custom SPARQL queries over the
OpenCitations Meta SPARQL endpoint. For each error there are a label, a description in natural
language, and the total count of distinct entities affected by the error.

Label Issue Description #

duplicate br count Bibliographic resources sharing the
same ID value for any given scheme
(e.g. the same DOI is linked to 2
separate journal articles).

1,388,761

duplicate agent count Agents sharing the same ID value
for any given scheme (e.g. different
authors have the same ORCID).

2,544,914

duplicate id count Identifiers (datacite:Identifier enti-
ties) sharing the same literal value
for the same scheme.

1,388,761

multiple manifestations count Bibliographic resources appear-
ing to be embodied in multiple
fabio:Manifestations entities.

13

br in multiple venues count Bibliographic resources appearing
to be contained in different venues.

760,011

br with multiple id values count There are bibliographic resources
that have 2 or more values for
at least one of their supported ID
schemes (e.g. 2 DOIs for a single
journal article).

760,011

5 Related Work

As concerns RDF data quality assessment, there have been several endeavours to
tackle this problem [26], though the great majority of the associated tools (where they
exist) either require a high degree of manual configuration or provide information

18

of limited use. An interesting work in this field, whose approach resembles the one
proposed by our paper, is presented in [27]. Here the authors present a methodology
and a tool for assessing the quality of RDF data by following a test-driven approach
inspired by software engineering. They propose the concept of Data Quality Test
Patterns (DQTPs), which encapsulate common data quality issues into structured
SPARQL query templates. These patterns are then used to instantiate actual test-
cases (SPARQL queries) by binding specific values to the variables in the templates.
Notably, test-cases can be automatically generated with Test Auto Generators (TAGs),
which interrogate the RDF data to test and try to instantiate test-cases based on the
OWL axioms and RDFS constructs defined in the ontologies used therein. With TAGs,
it is possible to ensure that the data complies with simple schema constraints such
as property domain, range and cardinality. For more complex tests or tests that are
not derivable from the constraints formalised in the ontologies, the authors suggest to
manually instantiate specific tests by re-using the DQTPs. The methodology presented
in [27] also defines coverage metrics, which measure the adequacy of the test cases by
assessing how well they capture different aspects of data quality (e.g. property domain
coverage, class membership), represents the test-cases in RDF and associates a URI
to each of them.

While this methodology proves effective for datasets with broad and heterogeneous
structures —such as DBpedia, which was evaluated by the authors —its applicability
to more controlled environments like OpenCitations requires careful consideration. The
schemas included in the ontologies reused by the OpenCitations Data Model (OCDM)
are well-suited for verifying general or simpler semantic relationships, but they are
often too basic to support the automatic generation of meaningful tests tailored to
the specific constraints and application context relevant to OpenCitations. In con-
trast to crowdsourced datasets like DBpedia, the data in OpenCitations is converted
and ingested within a strictly controlled environment, ensuring that many fundamen-
tal constraints are already satisfied by design. As a result, tests generated purely
from ontology schemas would, in many cases, verify relationships whose correctness is
already guaranteed, adding little value to the quality assessment process.

Moreover, many of the properties and classes defined in the ontologies reused by
OpenCitations are not currently utilized in its datasets. This means that an automatic
test generation approach, as described by [27], would likely produce a significant num-
ber of non-applicable test cases. Furthermore, OpenCitations’ current post-ingestion
quality assessment relies on a small set of specific tests, carefully designed based
on known issues that have been previously identified in the dataset. At this stage,
implementing a more generalized pattern-based testing methodology would require
substantial effort without offering clear advantages. Instantiating tests manually pro-
vides greater flexibility, allowing for fine-grained selection of the rules to be checked
while at the same time avoiding the computational cost of executing unnecessary test
cases: coherently with the aim of providing an insight on the data quality that is a
good representation of its fitness for use, our approach focuses on ensuring that qual-
ity assessments can be performed frequently and that the results are presented in a
way that is clear and easily interpretable.

19

Additionally, there are practical concerns regarding the long-term viability of
adopting the methodology proposed by [27], as the software tool implementing their
approach does not appear to be actively maintained.

Nevertheless, [27] remains relevant for large-scale RDF quality assessment, and
some of its aspects could be valuable for OpenCitations in the future. The scala-
bility of its approach makes it suitable for analyzing extensive datasets, though, as
mentioned, in the case of OpenCitations the results might include information of lim-
ited relevance. The representation of test cases in RDF with structured metadata is
another strength of their methodology, offering a formalized approach to document-
ing and managing quality assessments. Furthermore, relying on a library of patterns
facilitates the creation of new test-cases in a systematic and reusable way: in case
the number of pre-identified issues should grow, it might be an interesting avenue to
explore also for OpenCitations Meta and OpenCitations Index.

6 Conclusions

This work has presented a framework for ensuring the quality of bibliographic and
citation data within the OpenCitations Meta and OpenCitations Index. By addressing
pre-ingestion validation, we have built a system aimed at verifying the compliance of
the data eligible for ingestion with the data model adopted by OpenCitations and
with its existing ingestion workflow: the implemented validator ensures the syntactic
and semantic correctness of documents storing data to ingest, identifying errors with
granular precision and enabling both programmatic and user-friendly use. As concerns
post-ingestion quality monitoring, we developed a tool that can be used to continuously
evaluate the current data by verifying its status for known, previously identified issues.

A key feature of both the validation and the monitoring tools is their human-
oriented design: the endeavour to provide both internal and external users with clear
and accessible information led to pairing the machine-readable results of both tools
with human-readable and user-friendly interfaces.

While these tools can facilitate data quality management, certain limitations
remain. The validator is inherently tied to OpenCitations’ specific table formats
(META-CSV and CITS-CSV) and the rules of the OCDM, making it unsuitable for
use with other data structures and models. Moreover, the monitor relies on SPARQL
queries to detect errors, which limits its capacity to identify issues that manifest only
in data dumps or API behaviours.

An evaluation of both oc validator and oc monitor was conducted. The
oc validator was assessed using the Matilda dataset, allowing for a detailed analysis
of metadata and citation data quality issues. On the other hand, oc monitor was eval-
uated in the context of OpenCitations Meta, providing insights into its effectiveness
in tracking the status and availability of large-scale bibliographic data. These eval-
uations support the reliability and applicability of the tools in real-world scholarly
infrastructures.

Future efforts will focus on integrating the validator into a fully automated data
submission workflow, allowing seamless validation during the ingestion process. This
objective is particularly relevant within the context of data crowdsourcing, as it would

20

streamline operations that can be done automatically while at the same time valuing
the role of human agents in ensuring data quality.

7 Acknowledgments

This project has been partially funded by the European Union’s Horizon Europe
framework programme under grant agreement No. 101095129 (GraspOS Project).

References

[1] Chen, M., Mao, S., Liu, Y.: Big Data: A Survey. Mobile Networks and Applica-
tions 19(2), 171–209 (2014) https://doi.org/10.1007/s11036-013-0489-0

[2] Coalition for Advancing Research Assessment: Agreement on Reforming Research
Assessment. European Science Foundation (2022). https://coara.eu/agreement/
the-agreement-full-text/

[3] Barcelona Declaration on Open Research Information, Kramer, B., Neylon, C.,
Waltman, L.: Barcelona Declaration on Open Research Information (2024) https:
//doi.org/10.5281/ZENODO.10958522

[4] Hicks, D., Wouters, P., Waltman, L., De Rijcke, S., Rafols, I.: Bibliometrics:
The Leiden Manifesto for research metrics. Nature 520(7548), 429–431 (2015)
https://doi.org/10.1038/520429a

[5] Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., Da Silva Santos, L.B., Bourne, P.E., Bouw-
man, J., Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S.,
Evelo, C.T., Finkers, R., Gonzalez-Beltran, A., Gray, A.J.G., Groth, P., Goble,
C., Grethe, J.S., Heringa, J., ’T Hoen, P.A.C., Hooft, R., Kuhn, T., Kok, R., Kok,
J., Lusher, S.J., Martone, M.E., Mons, A., Packer, A.L., Persson, B., Rocca-Serra,
P., Roos, M., Van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater,
T., Strawn, G., Swertz, M.A., Thompson, M., Van Der Lei, J., Van Mulligen, E.,
Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., Mons,
B.: The FAIR Guiding Principles for scientific data management and stewardship.
Scientific Data 3(1), 160018 (2016) https://doi.org/10.1038/sdata.2016.18

[6] Manola, N., Tzouganatou, A., Kuchma, I., CoARAWG on OI4RRA: Open Infras-
tructures for Responsible Research Assessment: Principles and Framework (2025)
https://doi.org/10.5281/ZENODO.14844582

[7] Bilder, G., Lin, J., Neylon, C.: The Principles of Open Scholarly Infrastructure
(2020) https://doi.org/10.24343/C34W2H

[8] Heibi, I., Moretti, A., Peroni, S., Soricetti, M.: The OpenCitations Index: Descrip-
tion of a database providing open citation data. Scientometrics (2024) https:
//doi.org/10.1007/s11192-024-05160-7

21

https://doi.org/10.1007/s11036-013-0489-0
https://coara.eu/agreement/the-agreement-full-text/
https://coara.eu/agreement/the-agreement-full-text/
https://doi.org/10.5281/ZENODO.10958522
https://doi.org/10.5281/ZENODO.10958522
https://doi.org/10.1038/520429a
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.5281/ZENODO.14844582
https://doi.org/10.24343/C34W2H
https://doi.org/10.1007/s11192-024-05160-7
https://doi.org/10.1007/s11192-024-05160-7

[9] Massari, A., Mariani, F., Heibi, I., Peroni, S., Shotton, D.: OpenCitations Meta.
Quantitative Science Studies, 1–26 (2024) https://doi.org/10.1162/qss a 00292

[10] Hendricks, G., Tkaczyk, D., Lin, J., Feeney, P.: Crossref: The sustainable source
of community-owned scholarly metadata. Quantitative Science Studies 1(1), 414–
427 (2020) https://doi.org/10.1162/qss a 00022

[11] DataCite Metadata Working Group: DataCite Metadata Schema Documentation
for the Publication and Citation of Research Data and Other Research Outputs
v4.5 (2024) https://doi.org/10.14454/G8E5-6293

[12] Hutchins, B.I., Baker, K.L., Davis, M.T., Diwersy, M.A., Haque, E., Harriman,
R.M., Hoppe, T.A., Leicht, S.A., Meyer, P., Santangelo, G.M.: The NIH Open
Citation Collection: A public access, broad coverage resource. PLOS Biology
17(10), 3000385 (2019) https://doi.org/10.1371/journal.pbio.3000385

[13] Atzori, C., Bardi, A., Manghi, P., Mannocci, A.: The OpenAIRE Workflows
for Data Management. In: Grana, C., Baraldi, L. (eds.) Digital Libraries and
Archives vol. 733, pp. 95–107. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68130-6 8

[14] Manghi, P., Bolikowski, L., Manold, N., Schirrwagen, J., Smith, T.: Ope-
nAIREplus: The European Scholarly Communication Data Infrastructure. D-Lib
Magazine 18(9/10) (2012) https://doi.org/10.1045/september2012-manghi

[15] Kato, T., Tsuchiya, E., Kubota, S., Miyagawa, Y.: Japan Link Center (JaLC):
Link management and DOI assignment for Japanese electronic scholarly contents.
Journal of Information Processing and Management 55(1), 42–46 (2012) https:
//doi.org/10.1241/johokanri.55.42

[16] Daquino, M., Peroni, S., Shotton, D., Colavizza, G., Ghavimi, B., Lauscher, A.,
Mayr, P., Romanello, M., Zumstein, P.: The OpenCitations Data Model. In:
Pan, J.Z., Tamma, V., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Senevi-
ratne, O., Kagal, L. (eds.) The Semantic Web – ISWC 2020. Lecture Notes in
Computer Science, pp. 447–463. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-62466-8 28

[17] Maĺınek, V., Umerle, T., Gray, E., Heibi, I., Király, P., Klaes, C., Korytkowski, P.,
Lindemann, D., Moretti, A., Panušková, C., Péter, R., Tolonen, M., Tomczyńska,
A., Vimr, O.: Open Bibliographical Data Workflows and the Multilinguality Chal-
lenge. Journal of Open Humanities Data 10, 27 (2024) https://doi.org/10.5334/
johd.190

[18] Massari, A., Peroni, S.: HERITRACE: Tracing Evolution and Bridging Data for
Streamlined Curatorial Work in the GLAM Domain. arXiv (2024). https://doi.
org/10.48550/ARXIV.2402.00477

22

https://doi.org/10.1162/qss_a_00292
https://doi.org/10.1162/qss_a_00022
https://doi.org/10.14454/G8E5-6293
https://doi.org/10.1371/journal.pbio.3000385
https://doi.org/10.1007/978-3-319-68130-6_8
https://doi.org/10.1007/978-3-319-68130-6_8
https://doi.org/10.1045/september2012-manghi
https://doi.org/10.1241/johokanri.55.42
https://doi.org/10.1241/johokanri.55.42
https://doi.org/10.1007/978-3-030-62466-8_28
https://doi.org/10.1007/978-3-030-62466-8_28
https://doi.org/10.5334/johd.190
https://doi.org/10.5334/johd.190
https://doi.org/10.48550/ARXIV.2402.00477
https://doi.org/10.48550/ARXIV.2402.00477

[19] Peroni, S., Rizzetto, E.: A Tool for Validating and Monitoring Bibliographic Data
in Open Research Information Systems: The OpenCitations Collections. In: Cor-
nia, M., Nunzio, G.M.D., Firmani, D., Mizzaro, S., Serra, G., Tonelli, S., Trema-
munno, A. (eds.) Proceedings of the 21st Conference on Information and Research
Science Connecting to Digital and Library Science. CEURWorkshop Proceedings,
vol. 3937. CEUR, Udine, Italy (2025). https://ceur-ws.org/Vol-3937/#paper13
Accessed 2025-04-14

[20] Torny, D., Capelli, L., Danjean, L.: Matilda: Building a bibliographic/metric tool
for open citations and open science. In: ELPUB 2019 23d International Confer-
ence on Electronic Publishing. OpenEdition Press, ??? (2019). https://doi.org/
10.4000/proceedings.elpub.2019.22

[21] Moretti, A., Massari, A., Rizzetto, E., Soricetti, M., Heibi, I.: Oc ds converter.
OpenCitations (2024). https://doi.org/10.5281/zenodo.12911527

[22] Heibi, I., Peroni, S., Shotton, D.: Crowdsourcing Open Citations with CROCI
– An Analysis of the Current Status of Open Citations, and a Proposal. arXiv
(2019). https://doi.org/10.48550/arXiv.1902.02534

[23] Massari, A., Heibi, I.: How to Structure Citations Data and Bibliographic Meta-
data in the OpenCitations Accepted Format. arXiv (2022). https://doi.org/10.
48550/arXiv.2206.03971

[24] Massari, A.: How to Produce Well-Formed CSV Files for OpenCitations. Zenodo
(2022). https://doi.org/10.5281/zenodo.6597141

[25] Rizzetto, E., Heibi, I.: Material for the Evaluation of Oc validator with Matilda
and of Oc monitor with OpenCitations Meta. Zenodo (2025). https://doi.org/10.
5281/ZENODO.15224594

[26] Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality
assessment for Linked Data: A Survey: A systematic literature review and con-
ceptual framework. Semantic Web 7(1), 63–93 (2015) https://doi.org/10.3233/
SW-150175

[27] Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of
the 23rd International Conference on World Wide Web, pp. 747–758. ACM, Seoul
Korea (2014). https://doi.org/10.1145/2566486.2568002

23

https://doi.org/10.4000/proceedings.elpub.2019.22
https://doi.org/10.4000/proceedings.elpub.2019.22
https://doi.org/10.5281/zenodo.12911527
https://doi.org/10.48550/arXiv.1902.02534
https://doi.org/10.48550/arXiv.2206.03971
https://doi.org/10.48550/arXiv.2206.03971
https://doi.org/10.5281/zenodo.6597141
https://doi.org/10.5281/ZENODO.15224594
https://doi.org/10.5281/ZENODO.15224594
https://doi.org/10.3233/SW-150175
https://doi.org/10.3233/SW-150175
https://doi.org/10.1145/2566486.2568002

	Introduction
	Material and Methods
	The data and the current ingestion workflow
	Pre-ingestion Validation
	Post-ingestion data quality assurance

	Implementation
	oc_validator
	oc_monitor

	Applicative Scenarios
	oc_validator –Matilda case study
	oc_monitor –OpenCitations Meta

	Related Work
	Conclusions
	Acknowledgments

