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ABSTRACT 

The use of AI for scientific discovery has advanced at pace in the last decades. While this 
technology holds great potential to transform research, concerns have been voiced about its 
adverse, often unintended consequences. Can AI actually boost scientific creativity and lead to 
more innovative and impactful discoveries? Thus far, answers to this question remain largely 
anecdotal and confined to a handful of disciplines. In this paper, we study the diffusion of AI across 
80 scientific fields from 2000 to 2022 and its impact on creativity – measured through novelty and 
impact. We find that AI adoption has accelerated in nearly all disciplines since the early 2010s, 
with research activity becoming increasingly concentrated in three major regions: the EU, the US, 
and China. Our analysis confirms an overall positive effect of AI on scientific creativity, though with 
considerable variation across fields: while most have benefited, some have seen little to no gains, 
and a few have even experienced negative returns. We propose that the structural organisation of 
knowledge within a field – and, by extension, the patterns of knowledge production – may moderate 
the influence of AI on scientific discovery. Specifically, we show that AI has greater transformative 
potential in “rough” knowledge spaces, where ideas are more fragmented and disconnected, and 
human cognition struggle to cope with complexity. These findings contribute to the ongoing debate 
on the role of AI in science and are contextualised within recent policy initiatives designed to 
promote AI-powered science. 
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1. Introduction 

Science is, at its core, about seeking and applying new knowledge to better understand the natural 
and social world. Over the past century, scientific progress has been a cornerstone in addressing 
global challenges and promoting economic growth. Yet, empirical evidence points to worrying 
trends: the productivity of scientific research has declined significantly in recent decades (see, e.g., 
Pammolli et al., 2011; Scannell et al., 2012; Boeing and Hünermund; 2020; Aghion et al., 2021), 
ideas are becoming increasingly harder to find (Bloom et al., 2020), and scientific papers and 
patents are becoming less disruptive over time (Park et al., 2023). 

Against this backdrop, the fast-paced proliferation of Artificial Intelligence (AI) and the broad 
accessibility of AI/ML-powered tools have sparked both excitement and concern about its role in 
science. AI brings unprecedented capabilities to accelerate discovery – whether by processing 
vast amounts of data more efficiently to detect relationships, trends, or anomalies that might elude 
human researchers (saving time and resources) or by supporting research tasks like synthesising 
literature, brainstorming ideas, writing code, and more (see, e.g., Krenn et al., 2022; Peng et al., 
2023; Van Noorden and Perkel, 2023; Musslick et al., 2025). Some have even suggested, as 
highlighted in a recent DeepMind report (Griffin et al., 2024), that we may be entering “a new 
golden age of discovery”. Yet, alongside the epistemic benefits, AI carries epistemic risks when 
scientists trust it as knowledge-production partners. Indeed, the over-reliance on AI raises several 
concerns about its implications for scientific creativity, credibility, research integrity, and, more 
fundamentally, scientific understanding (Birhane et al., 2023; Messeri and Crockett, 2024).  

A growing body of literature has explored the penetration of AI in the sciences and the factors 
driving its diffusion (Arranz et al., 2024; Bianchini et al., 2024; Gao and Wang, 2024; 
Schmallenbach et al., 2024). However, the empirical evidence on how AI actually affects scientific 
productivity and creativity remains limited (Bianchini et al., 2022; Noy and Zhang, 2023; Yu, 2024; 
Toner-Rodger, 2024). Defining and measuring productivity and creativity in science presents an 
additional challenge. Metrics such as the number of scientific publications, patents, or experiments 
completed within a given timeframe are among the most commonly used proxies for analysing 
research productivity. But volume-based indicators alone may not suffice to fully grasp the 
multifaceted nature of scientific performance; other dimensions, such as novelty and impact of 
scientific output, must also be considered. Novelty reflects the originality and fresh insights a piece 
of research brings to its field, while impact assesses its influence on future studies and 
developments. We believe that both dimensions are particularly relevant when assessing the role 
of AI in scientific discovery. 

This paper investigates how the diffusion of AI is affecting scientific creativity, defined as the 
novelty and impact of scientific outcomes, using a large sample of OpenAlex publications spanning 
the period 2000-2022, and covering 80 scientific fields. In doing so, this research contributes to 
the emerging literature on “AI in science” (or AI4Science) in several ways.  

First, unlike existing studies that often focus narrowly on specific AI technologies (e.g., AlphaFold, 
Chat-GPT) or application domains (e.g., health sciences), our study takes a broader view by 
defining AI more inclusively and assessing its impact across a wide range of research fields. 
Second, we move beyond “traditional” citation-based metrics and also consider up-to-date novelty 
indicators. Third, we propose that some inherent characteristics of a field – particularly the 
“roughness” or combinatorial complexity of its knowledge space – may mediate the effects of AI 
on discovery. Finally, we contribute to the literature by conducting our analysis at both the global 
level and across major economic regions, with a focus on comparing the effect of AI on science in 
the EU, the US and China.  

To summarise the main takeaways of our work, our analysis reveals an overall positive effect of 
AI on scientific creativity, though such effects depend not just on the technology itself, but also on 
how, and where, it is used. We show that AI holds strong transformative potential in “rough” 
knowledge spaces, where the complexity and fragmentation of knowledge pose significant 
challenges to human cognition. By way of example, AI exerts strong influence in areas such as 
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Genetics Diagnosis or Drug Target, while its potential remains untapped in areas like Industrial 
Engineering or Design Automation. Furthermore, the overall effect of AI on both novelty and impact 
is stronger in China, followed by the US, and then the EU.  

The reminder of the paper is structured as follows. Section 2 provides an overview of the relevant 
literature and the conceptual framework guiding our analysis. Section 3 describes the data and the 
methodology. Section 4 presents the empirical results, while Section 5 concludes with implications 
for policy. 

2. Background 

2.1. Why is science slowing down?  

The production of new knowledge is central to the economic growth and societal well-being. As 
Romer (1993) observed, “the potential for continued economic growth comes from the vast search 
space that we can explore” (p.68-9), where the discovery of new ideas transforms limited physical 
resources into more valuable goods and services.  

However, since the early 2000s, economists have diagnosed a global productivity slowdown 
across multiple countries and industries (Goldin et al., 2024). This deceleration in productivity 
growth has occurred despite the advent of important technological advancements, especially in 
the digital domain, that were expected to drive economic development (Aghion et al., 2017; 
Brynjolfsson et al., 2018). Evidence on declining productivity growth rate has been accompanied 
by a significant slowdown in the rate of scientific discoveries and technological breakthroughs, 
even as the volume of new scientific and technological knowledge has grown exponentially. That 
implies that the productivity of scientific research has been decreasing over time, a trend observed 
across various economic sectors and countries (see, among others, Scannell et al., 2012; 
Miyagawa and Ishikawa, 2019; Bloom et al., 2020; Boeing and Hünermund, 2020). Additionally, 
recent research confirms slowing rates of disruptiveness of papers and patents, indicating that 
they are less likely to break with the past and push science and technology in new directions (Park 
et al., 2023). Bloom et al. (2020) succinctly summarize the issue: “Ideas – and in particular 
the exponential growth they imply – are getting harder and harder to find” (p.1104). 

Table 1: Why has scientific progress slowed down? 

Hypothesis Explanation How AI can help 

Exhaustion of “low-hanging 
fruits” 

Most accessible and impactful discoveries 
have already been made, leaving future 
research with diminishing returns 

AI can identify patterns and opportunities 
in complex data, uncovering “hidden” 
discoveries beyond the reach of 
traditional methods. 

     

“Burden of knowledge”  As knowledge expands, it becomes 
increasingly difficult for individual 
researchers to explore the growing space 
of ideas.  

AI can process vast and fragmented 
knowledge spaces, enabling 
researchers to integrate diverse fields 
and navigate complexity. It can also help 
reduce cognitive overload by 
synthesising and connecting information. 

   

Inefficiencies in modern 
science 

Heavy administrative burdens, biases 
against novelty, replication crises, 
stratification, and other systemic issues 
hinder productivity. 

AI can streamline research workflows, 
reduce administrative overhead, and 
improve reproducibility through 
automation and better data 
management. 

Notes: Details on how AI can boost science are discussed in the following section. 
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As is common in times of slowdown, commentators have focused on what might have gone wrong 
(see Table 1 for a summary). One of the simplest arguments is the fishing-out hypothesis: there is 
a finite pool of ideas and we are fishing the easiest first. According to this view, the “low-hanging 
fruits” have already been picked, leaving future research with diminishing returns (Cowen, 2011; 
Gordon, 2017). Another explanation rests on the “burden of knowledge” hypothesis, which 
suggests that as the knowledge frontier expands, the space of ideas becomes harder to explore 

(Jones, 2009).1 As many has advocated, we are drawing in information but starved for knowledge. 

In support of this theory, empirical evidence confirms an increase in the share of scientific papers 
and patents authored by teams of multiple collaborators, suggesting that science increasingly 
requires increasing effort and specialisation to achieve ground-breaking discoveries (Wuchty et al. 
2007). Not least, inefficiencies of the modern science system exacerbate the problem: heavy 
administrative workloads, biases against novelty, the replication crisis, and stratification are just a 
few of the challenges amplifying the slowdown in scientific progress (Jones et al., 2008; Stephan, 
2012; Azoulay and Li, 2020; Franzoni et al., 2022). 

2.2. Science in the age of AI 

Progress in information and communication technologies (ICTs) has made knowledge more 
accessible and science more automatable (King et al., 2009; Waltz and Buchanan, 2009). Mokyr 
et al. (2015) argue that the tools developed during the ICT revolution substantially improved 
scientists’ ability to store vast amounts of data, search across information silos, and analyse them 
at a fraction of the cost compared to just a few decades ago. Yet, as discussed earlier, these 
advancements did not translate into a proportional increase in scientific productivity and truly 
innovative research.  

AI represents the next frontier in this evolution and may offer a promising turnaround to make 
scientific research both more productive and creative. Due to its transformative and pervasive 
nature, indeed, some scholars have described AI as a “general method of invention” – a framework 
that positions AI as a technology broadly applicable across diverse fields to enhance problem-
solving and facilitate the creation of new ideas, technologies, and innovations (Cockburn et al., 
2019; Crafts, 2021; Bianchini et al., 2022). 

How can AI systems contribute concretely to science? Distinct yet complementary AI interventions 
are being proposed that span the entire research pipeline (Table 2). Krenn et al. (2022) introduce 
three fundamental dimensions of impact for AI-assisted science. First, AI can function as a 
computational microscope, enhancing a laboratory’s measurement capabilities and uncovering 
insights that are currently beyond the reach of experimental methods. One implication of this is an 
increase in the complexity and accuracy of experiments and computer simulations that scientists 
can conduct. Also, with AI/ML tools, human scientists can expand their “spectrum of senses”, that 

is, their ability to sense structures and recognise underlying patterns in highly complex data.2

 

1 Romer (1993), cited at the opening of this Section, continued along these lines: “The curse of 
dimensionality is […] a remarkable blessing. To appreciate the potential for discovery, one need only 
consider the possibility that an extremely small fraction of the large number of possible mixtures may be 
valuable” (p.69). 
2 This dimension – AI as a computational microscope – is the one most readily captured through 
bibliometric data, as scientists often explicitly acknowledge the use of AI/ML tools for specific research 
purposes (e.g., “we use AlphaFold to reveal the 3D protein structure…”). It is, in fact, the primary effect 
that we aim to capture in our empirical analysis. Note that the other dimensions of AI contribution are 
equally important, though they are very difficult, if not impossible, to quantify using publication data. 
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Table 2. Science in the age of AI: Potential benefits and risks 

Dimension Explanation Example of application Risks for scientific creativity 

Computational microscope AI analyses large and more complex systems. 

Uncovers insights not yet attainable by experiments. 

Enhances simulation accuracy and reduces timescale. 

Generates, extracts, and annotates large scientific datasets. 

Expands scientists’ “spectrum of senses”. 

Finding the best architecture for a computer chip: 
https://doi.org/10.1038/s41586-021-03544-w   

Controlling the nuclear fusion plasma in a tokamak: 
https://doi.org/10.1038/s41586-021-04301-9   

Generating a catalogue of genetic mutations: 
https://doi.org/10.1126/science.adg7492  

Improving gravitational wave detectors: 
https://doi.org/10.48550/arXiv.2301.06221  

Novelty:  

Risk of paradigm lock-in, where AI limits exploration to patterns 
found in historical data. 

Focus on “pseudo-novelty”, where surprising patterns may lack 
scientific grounding. 

Lack of serendipity and intimations on phenomena that deviate 
from expectations. 

Illusion of explanatory depth and objectivity. 

 

Impact:  

Over-reliance on AI outputs without validation.  

Loss of trust in results due to model opacity and lack of 
interpretability. 

Outputs are too narrowly focused and fail to address broader 
scientific questions or interdisciplinary contexts. 

Insights may be perceived as lacking causal reasoning or 
theoretical grounding. 

     

Source of inspiration AI identifies unexpected regularities in data and literature. 

Synthesizes literature and highlights unexplored knowledge 
areas. 

Proposes interpretable solutions. 

Assists in brainstorming, writing, and coding. 

 

Identifying unexpected phase of crystal structures in high-pressure 
physics: https://doi.org/10.1088/0953-8984/23/5/053201  

Predicting future research trends in quantum physics: 
https://doi.org/10.1073/pnas.1914370116 

Explaining facial appearance by deconstructing a neural network: 
https://doi.org/10.1016/j.dsp.2017.10.011  

Re-discovering Newton’s law of gravitation: 
https://doi.org/10.48550/arXiv.2202.02306  

    

Agent of understanding AI autonomously generalizes observations, transfers scientific 
concepts to new phenomena, and achieves independent 
scientific understanding. 

-  

    

Manager AI as a manager of humans who perform research tasks. 

Five management functions: Task division/allocation, direction, 
coordination, motivation, supporting learning. 

Allocating tasks to study mosquitos: 
https://doi.org/10.3390/insects13080675  

Coordinating time and location of aurora sightings:  
https://doi.org/10.1002/2015SW001214  

Sending motivational messages for crowd science on galaxy 
shapes: https://dl.acm.org/doi/10.5555/3061053.3061159  

 

 

Notes: This table, of our own elaboration, builds on the three dimensions of computer-assisted scientific understanding proposed in Krenn et al. (2022) and the survey of the 
literature presented in Section 2.2. The identified risks for scientific creativity (novelty and impact) apply to all dimensions. 

https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1126/science.adg7492
https://doi.org/10.48550/arXiv.2301.06221
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1073/pnas.1914370116
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.48550/arXiv.2202.02306
https://doi.org/10.3390/insects13080675
https://doi.org/10.1002/2015SW001214
https://dl.acm.org/doi/10.5555/3061053.3061159
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Second, AI can act as source of inspiration for new concepts and ideas, expanding the boundaries of human 
imagination and creativity. This includes, for instance, identifying unexpected regularities in experiments or 
simulations that may surprise human scientists and suggesting novel directions for further investigation. One 
of the biggest challenges facing scientists is how to keep up to date with the vast and ever-growing body of 
scientific literature within and beyond their field, to determine what is already known and discovered. Here, 
AI can help alleviate this “knowledge burden” by assisting researchers in navigating the growing volume of 
papers, synthetising key insights, and spotting unexplored regions of the knowledge space, while uncovering 
surprising patterns in the scientific literature (for concrete examples see Hastings 2023, Ch.2). AI can also 
generate innovative concepts through model inspection, for example, by inverting a neural network to 
understand the internal representations it has learned. For a broader discussion on the potential of AI to 
generate novel research ideas, see Si et al. (2024), and the preliminary study by Microsoft Research 
AI4Science (2023) spanning a wide range of scientific areas including drug discovery, biology, 
computational chemistry, materials design, and partial differential equations. 

Third, AI may act as an agent of understanding, taking on the role of generalising observations and 
transferring scientific concepts to new phenomena. While in the first two dimensions AI supports humans in 
gaining understanding, in this final dimension the machine would autonomously achieve new scientific 

understanding.3 

In addition to the potential of AI in performing functional research tasks, Koehler and Sauermann (2024) 
provide evidence on the role of AI as a manager of scientists who perform such tasks. They identify five core 
“management” functions that are important in scientific research and that are particularly well-suited for 
intelligent machines: (i) task division and allocation, (ii) direction (providing guidance on how to perform 
specific tasks), (iii) coordination (integrating efforts and outputs from different scientists), (iv) motivation, and 
(v) supporting learning (tracking performance, identifying causes of problems, providing feedback). 

The potential benefits of AI are worth taking seriously, but while AI may represent a game-changer for 
science, a growing number of scholars have raised concerns about potential, often unintended, 
consequences of its (mis)use (see, e.g., Birhane et al., 2023; Grimes et al., 2023; Messeri and Crockett, 
2024). These concerns extend to both “traditional” AI/ML techniques and the newer generation of large 
language models (LLMs), as well as broader categories like foundation models and generative AI (GenAI).  

Regarding the former, a long-standing debate surrounds the opacity and transparency of AI/ML models, 
especially deep neural networks. The lack of interpretability of these “black box” models brings up critical 
questions about trust and reliability, and thus confidence in the validity of AI-generated inferences. As Rudin 
(2019) put it: “Let us stop calling approximations to black box model predictions ‘explanations’ ” (p.208). 
Issues also arise from data quality, particularly when data points are incomplete, erroneous, or inappropriate. 
Indeed, since AI learns from data, it may develop a skewed “tip-of-the-iceberg” view of the world or, worse, 
an entirely incorrect one that ultimately produces poor decisions (Budach et al., 2022). “Garbage in, garbage 
out,” as Hanson et al. (2023) aptly put it. 

AI could also have pervasive effects on scientific novelty, and the reason is simple: as AI models generate 
insights by identifying patterns based on past research, they risk engendering a paradigm lock-in and 
tamping down possibilities for new scientific directions (Birhane et al., 2023). This creates what Messeri and 
Crockett (2024) describe as an “illusion of explanatory breadth”, where researchers may falsely believe they 
are exploring the full space of testable hypotheses, while in reality, they are constrained to a narrower subset 
of hypotheses that are testable with AI tools. So, the efficiency offered by AI could inadvertently foster the 
growth of scientific monocultures and homogeneity, in which certain forms of knowledge production – those 
best suited for AI assistance – come to dominate all the rest, thereby stifling novelty. A related concern is 
the potential loss of serendipity, a cornerstone of scientific breakthroughs, since machines do not (yet) have 
intimations of something that operates differently than expected. Science may therefore become too 
structured, too predictable, and too focused on what is computationally convenient for an AI. 

Furthermore, scientific discoveries made through AI may struggle to gain acceptance within the scientific 
community and ultimately lack impact. This is because AI-generated insights are often regarded as both 
interpreter-dependent and theory-laden, lacking the causal principles needed to provide genuine 
understanding – i.e., an issue rooted in the long-standing debate on correlations vs. causation (Mullainathan 
and Spiess, 2017; Pearl and Mackenzie, 2018). Recent research in strategy science, indeed, has confirmed 
that when searching for the solution to a problem, being guided by a theory leads to better decisions and 
more innovative solutions (Felin and Holweg, 2024; Sorenson, 2024). Progress in AI may have given us 

 

3 We use “would” here because this capability remains a theoretical prospect rather than a current reality. Krenn 
et al. (2023) propose two sufficient conditions for an AI system – referred to as “scientific androids” in their 
terminology – to be considered an agent of understanding. Condition 1: An android gained scientific understanding 
if it can recognize qualitatively characteristic consequences of a theory without performing exact computations 
and use them in a new context. Condition 2: An android gained scientific understanding if it can transfer its 
understanding to a human expert. By strictly adhering to these two conditions, it becomes clear that we are by no 
means close to achieving true artificial autonomous scientists. More on the topic of “scientific understanding” in 
general and how this can be mastered by intelligent machines can be found in De Regt (2017). 
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machines with truly impressive abilities but no real “scientific intelligence” (i.e., the capacity to generate, 
understand, and apply causal explanations grounded in theory) and, as such, we may end up producing 
more, but understanding less.  

With LLMs and GenAI, additional concerns arise about factual accuracy, biases, and the potential erosion 
of scientific rigor. For instance, these models are well-known to generate non-existent or false content, a 
phenomenon referred to as “hallucination”, which is clearly problematic in the realm of scientific research 
(Athaluri et al., 2023; Beutel et al., 2023). They also pose risks to research integrity and deontological 
obligations, for example, in cases of plagiarism or excessive reliance on writing or coding assistance. In 
short, whether involving LLMs or other AI/ML techniques, these technologies can fundamentally challenge 
the ethos of science and undermine some core values such as objectivity, rigor, and accountability. As four 
experts in artificial intelligence ethics and policy stated in a recent interview (Birhane et al., 2023): 
“Researchers must proceed with caution, engaging the affordances provided by these technologies with the 
same kinds of epistemic humility, deflationary scepticism and disciplined adherence to the scientific method 
that have functioned as preconditions of modern scientific advancement since the dawn of the seventeenth-
century Baconian and Newtonian revolutions” (p.277). 

From what has been discussed so far, it is clear that AI presents both opportunities and challenges for 
scientific discovery. The ultimate effect of AI on science, therefore, remains an open empirical question. We 
now turn to a review of the existing literature on the impact of AI in research. In doing so, we will also position 
our research within the current state of the art, outlining how our study builds on and extends prior work. 

2.3. Empirical and theoretical evidence 

A growing body of literature has focused on assessing the degree of penetration of AI technology in the 
sciences (see, among others, Xu et al., 2021; Gargiulo et al., 2023; Hajkowicz et al., 2023; Duede et al., 
2024) and its adoption across different geographies (Arranz et al., 2023; AlShebli et al., 2024; 
Schmallenbach et al., 2024). We know collectively that the use of AI/ML in research is becoming pervasive 
across disciplines, fields, and geographic areas, with sharp growth in recent years. Fewer studies, however, 
have investigated the direct effects of AI on scientific research and R&D activities. Moreover, we identify two 
main limitations in the existing literature: first, an overemphasis on selected research fields or specific AI 
technologies; and second, a disproportionate focus on a handful of ground-breaking models, often resulting 
in anecdotal evidence drawn primarily from “success stories”.  

For instance, Furman and Teodoridis (2020) study the effects of the Microsoft Kinect gaming system, 
powered by AI pattern recognition software, on knowledge production in computer science and electrical 
and electronics engineering. Their findings suggest that integrating AI technology leads to increased 
research output and greater research diversity. Bianchini et al. (2022) focus instead on neural-network-
based technology in the health sciences, reporting a positive relationship between the adoption of such 
technologies and the likelihood of a scientific contribution becoming influential (i.e., highly cited), though not 
necessarily novel. Yu (2024) investigates the impact of AlphaFold on structural biology research, finding no 
significant effect on the number of publications but a positive impact on citation counts.  

In the context of R&D and innovation, Rammer et al. (2022) analyse German firms and find that the use of 
AI technologies is associated with significantly higher rates of product and process innovations. In the same 
vein, Toner-Rodgers (2024) examines the impact of an AI-driven tool (i.e., graph neural networks) on 
materials discovery in a U.S. R&D lab, showing that AI-assisted scientists were able to discover 44% more 
materials, which led to an increase in patent filings and a rise in product innovation. Similar effects on AI 

patenting of climate-related inventions are found in Verendel (2023).4 

Closer to our research is the recent work by Gao and Wang (2024), which examines the diffusion and impact 
of AI on citation counts across 19 disciplines and 292 fields using the MAG database, covering the period 
from 1960 to 2019. They find that publications that use AI – proxied by mentions of AI-related terms in 
publication titles and abstracts – tend to enjoy a citation premium, being more frequently cited both within 
and outside their disciplines. Notably, the authors highlight substantial heterogeneity in the direct use and 
potential benefits of AI across different disciplines. In fact, they conclude that almost every macro-discipline 
includes some subfields that experience high citation benefits from AI. For instance, they show that while 
‘medicine’ as an aggregated discipline does not rank among the highest in terms of AI benefits, some of its 
subfields (e.g., ‘nuclear medicine’, ‘optometry’, and ‘medical physics’) exhibit substantial returns from AI 

integration.5  

 

4  For an in-depth discussion of the influence of AI on corporate innovation and other dimensions of innovation 
management, see, e.g., Bahoo et al. (2023) and Tekic and Füller (2023). 
5 Other studies on “AI in science” focus not directly on the impact of AI on knowledge production but rather on the 
structure of scientific teams and the challenges of interdisciplinary collaborations in AI research (Thu et al., 2022; 
Abbonato et al., 2024), on the growing influence of the private sector in AI research (Ahmed and Wahed, 2020; 
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Our study builds on and complement the above empirical contributions in several respects. First, we extend 
the analysis to more recent years (up to 2022), which is particularly important given the exponential growth 
in AI adoption, as documented in later sections. Second, we broaden the scope of impact metrics beyond 
citation counts to include exceptionally highly cited papers and additional measures of scientific novelty. 
Third, while Gao and Wang (2024) identify cross-field heterogeneity in the benefits of AI, they do not explore 
the underlying reasons for these differences. Here, we propose explanations related to the inherent 
characteristics of the knowledge space that scientists must navigate within their respective fields. In other 
words, we seek to understand why the potential impact of AI may vary from one field to another. Fourth, it 
is well known that countries such as China have recently been catching up in AI research, but we are not 
aware of any other studies that investigate the effects of AI in science at the geographical level. To be clear, 
we are not claiming that no studies compare the relative positions of countries worldwide in AI research; 
indeed, there is abundant literature on this topic (see, among others, Klinger et al. 2021; AlShebli et al., 
2024; Schmallenbach et al., 2024). However, to our knowledge, no prior research has estimated the returns 
of AI in terms of scientific creativity while accounting for geographical differences. Our research addresses 
this gap as well. 

Complementing the scarce empirical literature, a few theoretical studies show that, under certain 
assumptions, AI-enhanced R&D makes scientists and engineers more productive and, in turn, accelerates 
the production of new ideas (Besiroglu et al., 2024). This is especially true for scientific challenges involving 
combinatorial-type research problems (Agrawal et al., 2018). In fact, the notion that knowledge production 
is fundamentally recombinant in nature has deep intellectual roots (see, e.g., Arthur, 2009). The generation 
of new ideas hinges on the ability to combine existing knowledge into novel configurations, with an almost 
infinite number of ways in which different combinations can be put together (Weitzman, 1998; Fleming, 
2001). According to this recombinant approach, thus, knowledge creation is inherently a process of 
searching and combining elements within a complex knowledge space. Yet, it is clear that as the knowledge 
frontier expands, both its morphology and complexity evolve: some regions become densely connected, 
while others grow increasingly isolated. In short, transforming the ever-expanding body of knowledge and 
information into valuable new ideas and innovations becomes progressively more challenging (Jones, 2009; 
Uzzi et al., 2013).  

Some theoretical studies propose that AI may alleviate this burden. In their theoretical model, Agrawal et al. 
(2018) show that AI can support researchers to explore sparse, uncharted (and hence complex) territories 
within the theoretical search space, facilitate access to relevant knowledge, and enhance their ability to find 
new, useful combinations. The sequential search over a vast combinatorial knowledge space would 
ultimately result in “better, faster, cheaper” science (Agrawal et al., 2024). Along similar lines, Chen et al. 
(2024) suggest that AI may guide researchers to break away from longstanding, domain-specific mindsets 
and embrace new research paths via two mechanisms: knowledge hybridization across fields (exemplified 
by the development of MRI from medicine and physics) and knowledge mutation within a field (e.g., mRNA 
from well-understood principles of RNA biology), all while minimizing search costs. 

One key takeaway from these theoretical models is that fields – and research problems therein – differ in 
how knowledge is structured: some knowledge spaces are smooth and well-connected, while others are 
rough and fragmented, requiring greater effort and new tools to navigate. As a result, we expect that the 
potential impact of AI is likely to vary across fields. In the second part of our empirical analysis, we will test 
how the effects of AI on creativity depend on the structure of field-specific knowledge spaces.  

3. Data and Methods 

3.1. The sample 

We collected data from OpenAlex for the period 2000-2022, restricting the sample to peer-reviewed journal 
articles, conference proceedings, and preprint collections. The hierarchical structure of the OpenAlex 
“concept” taxonomy – which includes over 65,000 unique concepts at varying levels of granularity – allowed 
us to assign publications to different scientific fields. Each document may be associated with multiple 
concepts, and thus multiple fields, with each concept accompanied by a score indicating the confidence 
level of its classification. We classified a paper as an “AI paper” if it was associated with the (level-1) 

concepts Artificial Intelligence or Machine Learning, or with at least one of their 400+ sub-concepts.6 

Analysing the entirety of OpenAlex is admittedly beyond our reach. The computational burden required to 
characterise the knowledge space of different fields (more on this in Section 3.3) and to estimate the effects 
of AI on novelty and impact through econometric models (details in Section 3.4) constrained our ability to 

 

Ahmed et al., 2023), and the mobility of AI talent from academia to industry (Gofman and Jin, 2024; Jurowetzki et 
al., 2025). 
6 For readers unfamiliar with the concept taxonomy, an overview is available here: OpenAlex Concept Taxonomy.  

https://docs.openalex.org/api-entities/concepts
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work with the full dataset. We implemented a protocol for data retrieval that ensures coverage of a sufficiently 
large number of fields where AI has been widely adopted (e.g., Remotely Operated Vehicles) and fields with 
high volumes of scientific output (e.g., Cancer Therapy), even if they do not heavily involve AI. The final 
sample consists of approximately 3 million documents associated with 80 fields, identified at levels 2 and 3 
of the concept hierarchy, of which ~35% were flagged as AI papers. Technical details on the protocol for 
data retrieval are provided in Appendix A1 (see also Figure A1), while the list of selected fields, along with 
their descriptions and examples of AI applications, is reported in Table A2.  

For the sake of validation, we carried out a manual inspection of the abstracts of several papers in our 
sample, confirming the versatility of AI as a tool to support scientific research. By way of example, in some 
fields related to drug discovery (e.g., Druggability, Drug Target) AI was explicitly mentioned as being used 
to identify potential drug-binding sites on protein structures or to predict drug targets in pathogens. In cancer-
related fields (e.g., Cancer Therapy, Cancer Detection), for instance, AI could assist physicians in tailoring 
cancer treatments based on patient profiles or classify cancer types from biopsy samples. Other examples 
include AI analysing real-time production data to adjust machine speeds (Digital Manufacturing), creating 
innovative designs for product development (Ideation), predicting timelines and costs of new projects 
(Project Estimation), optimising schedules and resource allocation based on historical project data (Project 
Management), and modelling customer behaviour in e-commerce (Behavioural Modelling), among many 
others. 

As a cautionary note, we do not claim that the results reported in this manuscript fully capture the dynamics 
of the entire scientific landscape. However, we are confident that they are robust enough to offer meaningful 
insights and support some speculative conclusions on a larger scale. Further research is, of course, 
encouraged to expand and refine the scope of the analyses presented here. 

3.2. Metrics for scientific creativity 

Scientific creativity emerges when an individual or small group of individuals working together generates 
contributions to science that are both novel and useful. Novelty, or originality, involves breaking new ground 
or departing from the established status quo. Usefulness, on the other hand, pertains to the practical or 
theoretical value of an idea, and thus its influence within a scientific field or, more broadly, across science. 
This conceptual framework is largely inspired by the seminal works of Teresa Amabile and Margaret Boden. 
Amabile and Pratt (2016), for instance, define creativity as “the production of novel and useful ideas” (p.158); 
similarly, Boden (2004) describes it as “the ability to come up with ideas or artefacts that are new, surprising 
and valuable” (p.1). Guided by these definitions, we built a set of metrics to reflect the novelty and impact of 
each focal paper in our sample. 

Traditionally, the novelty of scientific papers has been measured using citation patterns (e.g., atypical 
combination of cited references). Yet citation-based metrics often fall short in identifying novel scientific 
ideas at the time of publication and in capturing their true intellectual contribution to scientific progress 
(Fontana et al., 2020). More recently, Art et al. (2025) have suggested that scientific ideas are more 
effectively embedded in the text of scientific literature, with shifts in language being the main criterion for 
identifying novel research.  

In our study, we follow this text-based approach to operationalise novelty. Hence, novelty was measured 
using: (1) the first appearance of new words or (2) noun phrases in the title or abstract of the focal paper; 
(3) the first appearance of unique pairwise combinations of words or (4) noun phrases in the titles or 
abstracts; and (5) the semantic distance of the focal paper from its most similar prior work.  

Each of these variables were constructed as follows:7  

• New Words: A binary variable equal to 1 if the focal paper introduces at least one new unigram (single 
word) in its title or abstract, and that word is subsequently reused in at least one other paper. 

• New Phrases: A binary variable equal to 1 if the focal paper introduces at least one new noun phrase in 
its title or abstract, and that phrase is subsequently reused in at least one other paper. Noun phrases 
consist of one or more words with a noun as their head (e.g., “polymerase chain reaction”). 

• New Words Combinations: A binary variable equal to 1 if the focal paper introduces at least one novel 
pair of words (used together), and this pair is reused in at least one subsequent paper. The individual 
words themselves do not need to be new. 

• New Phrases Combinations: Similar to New Word Combinations, but applied to phrases instead of single 
words. 

 

7 The original raw metrics for novelty were retrieved from here (Art et al., 2025) and matched to our sample using 
the unique OpenAlex publication ID. Except for the semantic distance, all variables in our analysis are from our 
own elaboration. 

https://zenodo.org/records/13869486


 

12 

• Semantic Distance: Calculated as 1 minus the maximum cosine similarity between the focal paper and 
all papers published in the previous five years, providing a measure of how semantically different the 
focal paper is from prior work. 

The second component of scientific creativity concerns impact, which is related to, but different from, novelty; 
if a paper provides novelty, that novelty must be adopted by the scientific community in order for its impact 
to be felt. Impact is measured by the number of citations received by the focal paper. Furthermore, we 
identified so-called “big hit” contributions – i.e., exceptionally cited papers. Specifically, we built the following 
metrics:  

• Weighted Nb. Citations: The yearly count of citations the focal paper has received from its year of 
publication up to August 2024 (the time of data extraction). 

• Top Cited: Three binary variables indicating whether the focal paper belongs to the top 10%, 5%, or 1% 
most-cited papers, with reference to other papers published in the same year and field. 

3.3. Measuring the combinatorial complexity of a knowledge space 

New knowledge somehow must come into being as fresh combinations of what already exists and is known 
– as principle known as “combinatorial evolution”, backed by the rich literature of the evolution of science 
and technology (Kuhn, 1962; Kauffman, 1993 – ch.2; Weitzman, 1998; Arthur, 2009 – especially ch.2 and 
ch.9). Coming up with something new typically requires a rich repository of knowledge (a knowledge space) 
and the ability to explore, transform, and evaluate links across different elements. Of course, most 
combinations are entirely sterile, but a rare few prove to be extraordinary fruitful. Seen this from perspective, 
knowledge creation is inherently a process of searching and (re)combining elements within a knowledge 
space. 

Figure 1. Topography of knowledge spaces 

                               (A)                                                                       (B) 

 

                               (C)                                                                       (D) 

 

 

Notes: A simplified representation of a knowledge space as a network graph (Top), where nodes represent knowledge elements 
and edges denote connections between them, and a corresponding topographical surface (Bottom). Panel A: A rugged space, 
shown as a scattered and sparse network, illustrating a knowledge space with unconventional and novel combinations of ideas 
(highlighted in red). Ideas are fragmented and there are few connections between knowledge elements. For example, a scientist 
familiar with element 1 may find it difficult to access element 8 due to the lack of direct or intermediary connections. This 
corresponds to navigating a jagged surface, as shown in Panel C. Panel B: A smooth, well-trodden knowledge space, depicted 
as a dense, well-connected network where most nodes follow established pathways. Ideas build incrementally on each other 
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and there are strong and frequent connections between knowledge elements. For example, a scientist familiar with element 1 
can easily access element 9 through element 10 or other paths. This corresponds to navigating a smooth surface, as shown in 
Panel D. The illustration is intended solely for conceptual simplification. 

Scientists from different fields must navigate knowledge spaces that can vary substantially in their structure 
and complexity. To measure the structural organization of knowledge – and, by extension, the process of 
knowledge production – within a scientific field, we used the indicator proposed by Lee et al. (2015), which 
identifies unusual or unprecedented combinations of references cited in a focal paper. This indicator was 
calculated for each paper in a field, and the values were then averaged across all papers within the field to 
produce a field-level measure. Appendix B provides technical details on the calculation of the indicator.  

The field-level measure thus represents the “roughness” – or combinatorial complexity – of the knowledge 

space within a scientific field.8 As illustrated in Figure 1 (top), fields with a higher score are characterized by 

knowledge space where connections between ideas are sparse or uneven, reflecting a less established and 
more fragmented knowledge structure. In these fields, scientists must first spot and then venture into new 
and unconventional combinations of ideas, akin to navigating a rugged landscape. On the contrary, fields 
with lower scores tend to be more incremental, with scientists predominantly building on well-established 
knowledge paths. In these cases, the knowledge landscape would resemble a smooth and well-trodden 
terrain. 

Our metric can be meaningfully linked to concepts derived from the NK model (Kauffman, 1993) for 
interpretative clarity, as illustrated in Figure 1 (bottom). A useful analogy is to visualise a knowledge space 
as three-dimensional surface, where the horizontal dimensions represent possible combinations of 
knowledge elements, and the vertical dimension represents the value of a particular combination. In fields 
with high combinatorial complexity, akin to rugged NK landscapes with high K, the search processes are 
more complex and uncertain, but potentially rich with opportunities for unconventional and novel 
breakthroughs. In fields with low combinatorial complexity, ideas are more densely connected, and thus 
forming a smooth knowledge landscape that is easier and more predictable to explore. 

In line with the theoretical models on AI for search and discovery discussed in Section 2.3, we expect AI to 
have greater potential for combinatorial creativity and thus to be particularly transformative in rough 
knowledge spaces, where human cognition may struggle to navigate complexity. Indeed, AI has been shown 
to excel at finding unconventional patterns and discovering hidden connections in vast amounts of data – 
hence the analogy of “AI as computational microscope”. Moreover, AI can identify gaps and missing links 
between unrelated fields, literature, data, etc., facilitating connections that are often beyond human foresight 
– see its role as “source of inspiration”;  and since scientific principles often transcend individual fields, and 
phenomena echo across fields, AI can borrow some principles from one domain of use and set to work in 
new ones. In addition to these capabilities, new AI-based techniques and methodological frameworks can 
be invented specifically to tackle complex problems that were previously intractable. 

However, AI is inherently dependent on regularities in its training data, meaning that in sparse knowledge 
spaces, where such regularities are absent or weak, its performance may degrade. Still, the potential of AI 
should not be underestimated in smoother knowledge spaces. In these settings, AI can capitalise on 
abundant, often well-structured data to achieve high accuracy and efficiency, validate existing frameworks, 
and propose incremental yet meaningful advancements.  

Ultimately, the extent to which the combinatorial complexity of a field mediates the effect of AI on scientific 
creativity remains an empirical question, one that we address in this study. 

3.4. Empirical setting 

The paper-level analysis compares AI vs. non-AI papers using a standard econometric framework. Hence, 
our main dependent variables are various measures of scientific novelty and impact. The main explanatory 
variable (AI) is a binary indicator that takes the value of 1 if the paper involves the use of AI and 0 otherwise. 
We considered a set of control variables to capture various characteristics of a focal paper, including the 
team size (Nb. Authors), the total count of references cited in the paper (Nb. References), a binary variable 
equal to 1 if the paper results from collaborations across multiple countries (International Collab.), and a 
binary variable indicating whether the paper provides a review or survey of extant literature 

(Survey/Review).9  

 

8 Note that the term “complexity” is often used to describe systems with many components and intricate 
interactions. However, in this study, we use complexity to describe the structural organisation of a knowledge 
space, specifically its level of fragmentation and sparsity. Under this definition, a knowledge space is considered 
more complex when its elements are more disconnected and scattered, making it harder to understand, navigate 
and recombine. 
9 The variable International Collab. takes value of 1 if there are at least two different countries in the authors’ 
affiliations, 0 otherwise. Survey/Review takes a value of 1 if we detect in the title of the paper the terms ‘survey’, 
‘review’, or ‘overview’, 0 otherwise. 
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For the geographic and field-level analyses, we used the same variables but examined how AI influences 
novelty and impact across different regions (China, the EU, and the US) and across fields characterised by 
varying degrees of “roughness” in the knowledge space. 

All binary dependent variables are modelled with a Logit regression, whereas continuous dependent 
variables using Ordinary Least Squares (OLS). In all estimates, we included fixed-effects for scientific fields 
(concept level-2) and time to account for field-specific dynamics and cohort effects. Descriptive statistics for 
all variables are reported in Appendix C. 

4. Results 

4.1. General trends 

4.1.1. Growing AI adoption in science  

The first statistic we present is the volume of scientific activity associated with AI (Figure 2a). Our findings 
are closely in line with the evidence documented in the literature (see Section 2.2), showing a steady 
increase during the period 2010-2015, followed by a sharp acceleration thereafter.  

The first take-off can be attributed to the “deep learning revolution” sparked by the breakthrough of AlexNet 
(2012) and the popularisation of deep convolutional neural networks (CNNs). The second surge is likely 
driven by the advent and widespread adoption of transformer architectures, following Vasani et al.’s seminal 
paper “Attention is all you need”. A similar pattern can be observed for the share of AI/ML papers (Figure 
2b), confirming that the role played by AI is not only expanding in absolute terms, but that these tools are 
taking up increasingly larger share of the academic research output.  

Figure 2. Trend in the total number and share of AI papers   

 

Notes: Panel A: Total number of papers involving AI published over time. Panel B: Share of AI papers as percentage of total 
research output over time. Figures start from 2010 to focus on recent trends and minimize noise caused by smaller sample sizes 
in earlier years. The trends shown here are specific to the selected fields and should not be interpreted as representative of the 
entire scientific landscape. Based on our own elaboration. 

4.1.2. Global geography of AI research  

Given its potential to shape global competitiveness, the race for world leadership in AI adoption in science 
and technology is intensifying globally. Countries are investing heavily in national AI strategies to guide and 
foster its development and deployment across various scientific domains and sectors of the economy. For 
example, China’s New Generation AI Development Plan (2015-2030) aims to make the country as one of 
the world’s leading AI powers by 2030; similar initiatives have been lunched in the US – the Biden 
administration released the updated National Artificial Intelligence Research and Development Strategic 
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Plan in May 2023 – and in Europe with its Coordinated Plan on AI, first published in 2018 and later updated 

in 2021.10   

To compare the performance of these three global players, we analysed the number of AI papers (fractional 
count) published by each region. Figure 3a and 3b reveal a particularly striking performance by China: after 
a slight decline between 2010 and 2016, China’s research output surged, surpassing both the EU and the 
US. In contrast, the EU and US followed a steady upward trend, though both regions experienced a slight 
slowdown in recent years.  

Figure 3. Trend in the total number and growth rate of AI papers, by world region 

       

 

Notes: Panel A: Fractional number of papers involving AI published over time by three regions (China, EU27, and the US). Panel 
B: Growth of AI papers calculated as 3-year rolling averages. Panel C: Same as Panel A but limited to papers with at least 10 
citations. Panel D: Number of AI papers falling in the top 1% most-cited publications. Figures start from 2010 to focus on recent 
trends and minimize noise caused by smaller sample sizes in earlier years. The trends shown here are specific to the selected 
fields and should not be interpreted as representative of the entire scientific landscape. Based on our own elaboration. 

The picture changes only slightly when filtering for papers that have received at least the arbitrary threshold 
of 10 citations (Figure 3c). Here, the US ranks ahead of the EU, except in recent years, but China still 
surpasses both in terms of volume after 2018. When considering the top-cited papers (Figure 3d), defined 

 

10 On the EU Coordinated Plan on AI, see here. For more details on China’s development plan, refer to Wu et al. 
(2020). For an overview of the over 1,000 AI policy initiatives launched by various countries, territories, and the 
EU, visit the OECD AI Policy Observatory (OECD, 2021). It is worth noting that “AI in science” has generally 
received only peripheral attention in these plans and policies, as the focus has mainly (so far) been on broader 
economic and social applications of AI technologies. 

https://digital-strategy.ec.europa.eu/en/policies/plan-ai
https://oecd.ai/en/dashboards/overview
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as those falling in the top 1% of the citation distribution, China takes the lead starting in 2020. In this case, 
the US systematically outperforms the EU. 

4.1.3. Heterogeneity across fields  

Figure 4 shows the mean difference between AI papers and other scientific publications across our 
indicators of novelty and impact, analysed by scientific fields. A clear takeaway from this figure is the 
substantial heterogeneity in how AI influences research output.  

Figure 4.  Novelty and impact for AI and non-AI papers across fields 

 

Notes: The plot compares the mean difference between AI papers and other scientific publications across various indicators of 
novelty and impact (x-axis) and scientific fields (y-axis). All variables are standardised to facilitate comparison across indicators. 
Darker shades of red indicate that AI/ML papers exhibit a higher mean for a given indicator compared to non-AI papers, while 
blue shades indicate the opposite. Based on our own elaboration. 

At a more aggregate level – concepts level-1 (see Figure C2 in Appendix C) – we identify areas where AI 
has strong influence (e.g., Pathology) and others with untapped potential (e.g., Industrial Engineering). More 
interesting, though puzzling, is the degree of heterogeneity that emerges at the finer-grained level within the 
domains, as illustrated in Figure 4. Several health-related fields (e.g., Cancer Imaging, Blood Cancer, Drug 
Target) benefit from balanced positive effects on both novelty and impact. But also, there are fields where 
AI positively affects impact but has limited effects on novelty (e.g., Protein Family, Human Genetics); and 
others seem to experience minimal or even negative effects (e.g., Project Estimation, Production Rate).  

To be clear, different factors could explain the different effects across disciplines: some fields may lag in 
adopting AI/ML tools due to cultural barriers, insufficient data, or inadequate computing infrastructures; 
others may face misalignment between AI tools and field-specific research needs or differ in their data-
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intensiveness. We recognise the importance all these factors, yet we are unable to measure them directly 
and hope future research will explore these differences in greater depth. That said, our primary focus is on 
whether the combinatorial complexity of a field’s knowledge space can influence the effects of AI on scientific 
creativity. 

4.1.4. AI in different knowledge landscapes 

Indeed, an important aspect is whether the strength of AI’s contribution to scientific novelty and impact varies 
according to the topology of the knowledge space that characterises a scientific field. 

Figure 5 shows the relationship between the mean “roughness”, or combinatorial complexity, of a field (x-
axis) and the mean difference between AI and non-AI papers for various indicators (y-axis). Overall, we 
observe that the influence of AI on different metrics of novelty (apart from semantic distance) and impact 
tends to intensify as the roughness of the knowledge space increases. 

A closer look at selected fields reveals that, e.g., Cancer Imaging, Drug Target, or Rare Diseases exhibit 
the highest positive returns from AI, particularly in generating novel ideas and achieving high citation 
impacts. Research in these fields relies heavily on different areas of expertise, and the knowledge space is, 
as a result, complex and fragmented: as an example, cancer imaging combines principles from medical 
imaging, molecular biology, and data analytics, whereas drug targeting relies on chemistry, genomics, and 
pharmacological modelling. As we see from the trends in Figure 5, AI seems particularly well suited to handle 
this complexity. 

Other areas such as Workflow Management or Remotely Operated Vehicles may operate within clear 
boundaries, with research often progressing through incremental improvements. Here, AI’s contribution 
appears more limited. While it can still provide gains in terms of efficiency in low-complexity fields, its 
transformative potential is comparatively weaker, as its use may be tied to optimising existing processes or 
models rather than reshaping the fundamental knowledge structure of the field. 

It is important to note that the discussion above is univariate and does not account for potential confounding 
factors. Further evidence, some of which partially contrasts the patterns observed in Figure 5, will be 
presented in the following sections. 

Figure 5. AI contribution to novelty and impact, by the combinatorial complexity of fields 

 

Notes: The plot represents the relationship between the mean combinatorial complexity, or “roughness”, of scientific fields (x-
axis) and the mean difference in a specific metric between AI and non-AI papers (y-axis). All variables are standardized to 
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facilitate comparison across indicators. A positive delta indicates that, on average, AI papers contributes more to a given metric, 
whereas negative values suggest a weaker contribution. The orange line represents a linear fit to capture the overall trend. 
Based on our own elaboration.  

4.2. Econometric results 

4.2.1. AI on novelty and impact 

Table 3 reports the estimated coefficients for the effect of AI on different indicators of scientific novelty. 
Taken together, we find a positive correlation between AI adoption and all metrics of novelty. More 
specifically, AI increases the likelihood of introducing new words, new phrases, and new words/phrases 
combinations (Columns 1–4), an important signal of conceptual novelty; moreover, the integration of AI 
seems to lead to scientific outputs that are semantically more distant from past research, hence more novel 
(Column 5).  

To further validate these findings, we conducted a manual inspection of some AI-related papers to spot 
newly introduced terms that were later widely re-used in future research. For example, in domains where 
the effect on novelty is particularly strong (see Figure 5) – e.g., Drug Target, Druggability, Genetic Diagnosis 
– we found new terms associated with the introduction of cutting-edge techniques for predicting drug-target 
binding affinity (DeepDTA), automated chemical compound classification (ClassyFire), or genetic newborn 
screening (Screen4Care). We therefore confirm that AI brings with it the capabilities to cope with the vast 
combinatorial space characteristic of fields such as chemistry and genetics, where the sheer number of 
possible interactions and configurations is a major challenge. We also came across new noun phrases such 
as ‘drug similarity assessment’, ‘predict drug repositioning’, or ‘protein concavity’. The appearance of these 
expressions reflects methodological refinements, practical applications and reframing of scientific questions, 
all reinforcing the idea that AI expands the scope of scientific inquiry by providing new tools and opening up 
new research possibilities – e.g., the identification of new therapeutic uses for existing or investigational 

drugs.11 

Table 3. The effect of AI on novelty 

 New Words New Words  

Comb. 

New Phrases New Phrases  

Comb. 

Semantic 
Distance 

 (1) (2) (3) (4) (5) 

AI 0.079***  
(0.009) 

0.110*** 

(0.004) 
0.112*** 
(0.005) 

0.201***  
(0.005) 

0.005***  
(0.0001) 

Nb. Authors 0.029***  
(0.001) 

0.061***  
(0.001) 

0.036***  
(0.001) 

0.067***  
(0.001) 

-0.0004*** 
(0.00001) 

Nb. References 0.016***  
(0.003) 

0.194***  
(0.001) 

0.099***  
(0.001) 

0.252***  
(0.001) 

-0.001*** 
(0.00002) 

International Collab. 0.096***  
(0.010) 

0.123***  
(0.006) 

0.072***  
(0.006) 

0.113***  
(0.006) 

0.001***  
(0.0001) 

Survey/Review -0.270***  
(0.042) 

-0.348***  
(0.016) 

-0.255***  
(0.021) 

-0.284***  
(0.017) 

0.001***  
(0.0003) 

Adjusted R2     0.160 

Log Likelihood -287,885 -824,636 -741,794 -726,505  

AIC 575,985 1,649,488 1,483,803 1,453,225  

# Observations 1,397,173 1,397,173 1,397,173 1,397,173 1,397,173 

Notes: The econometric models for evaluating the effect of AI on various indicators of novelty. Parameters in Columns 1–4 are 
estimated via Logit models, while those in Column 1 via OLS regression. All specifications include fixed effects for time and 
scientific fields. The number of observations falls due to the presence of missing values (NA) in the novelty metrics. The asterisks 
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 

Table 4 presents the estimates of the effect of AI on citation counts. Here again, we can see a positive 
correlation between AI and all metrics of impact. As shown in Column 1, AI papers receive, on average, 
~3% more citations compared to non-AI papers. And, interestingly, the magnitude of the effect strengthens 

 

11 Note that these are just a few examples, mainly for an internal check on the validity of our metrics. An in-depth 
analysis of newly introduced terms is beyond the scope of this study and, admittedly, outside our expertise. 
However, the dataset we are releasing with the publication (add link later) is an open-source resource for future 
research that may aim to explore this phenomenon in more depth. 

https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1186/s13321-016-0174-y
https://doi.org/10.1371/journal.pone.0293503
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as we move toward higher citation thresholds (Column 2–5) – see also Figure C2 in Appendix C. This 
suggests that AI disproportionately contributes to highly influential research. To get a sense of magnitude, 
the odd ratio from the Logit model of Column 5 tells us that AI papers are ~40% more likely to rank among 
the top 1% of most cited papers.  

 

Table 4. The effect of AI on impact 

 Weighted Nb. 
Citations 

Top Cited  

(10%) 

Top Cited  

(5%) 

Top Cited  

(1%) 

 (1) (2) (3) (4) 

AI 0.030***  
(0.001) 

0.168***  
(0.005) 

0.220***  
(0.007) 

0.338***  
(0.014) 

Nb. Authors 0.032***  
(0.0001) 

0.088***  
(0.001) 

0.077***  
(0.001) 

0.057***  
(0.001) 

Nb. References 0.282***  
(0.0003) 

1.122***  
(0.003) 

1.140***  
(0.004) 

1.170*** 
(0.007) 

International Collab. 0.191***  
(0.001) 

0.391***  
(0.005) 

0.412*** 
(0.007) 

0.483***  
(0.014) 

Survey/Review 0.134***  
(0.004) 

0.394***  
(0.017) 

0.490***  
(0.021) 

0.847***  
(0.033) 

Adjusted R2 0.409    

Log Likelihood  -735,378 -464,142 -139,458 

AIC  1,470,971 928,498 279,131 

# Observations 2,889,302 2,889,302 2,889,302 2,889,302 

Notes: The econometric models for evaluating the effect of AI on various indicators of impact. Parameters in Column 1 are 
estimated via OLS regression, while those in Columns 2–4 via Logit models. All specifications include fixed effects for time and 
scientific fields. The asterisks ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 

The signs for control variables conform with our expectations: papers with more authors, international 
collaborations, higher reference counts, or surveys tend to receive a citation premium. It goes without saying 
that our models show correlations rather than definitive proof of causation – e.g., there could be endogeneity 
if, say, high-novelty teams might be more inclined to adopt AI. 

4.2.2. Differences across geographies  

Do the benefits of AI vary by geographical area? The analysis shown in Figure 6 suggests that this is the 
case. Across novelty indicators (Panel A) and citation thresholds (Panel B), the contribution of AI to scientific 
outcome appears strongest in China, while the EU and the US exhibit similar trends.  

So, China has not only caught up in terms of scientific production – a trend already documented in Section 
4.1.2 – but the substantial government investment in AI research and large-scale AI infrastructures aimed 
at accelerating technological progress (Wu et al., 2020) has positioned the country as a global leader also 

in terms of AI-driven novelty and impact.12  

 

12 Our findings come with two main caveats. First, we report average effects across scientific fields; thus, we 
cannot exclude the possibility that AI has a more pronounced impact in specific domains within certain 
geographical areas, where a stronger domain-specific knowledge base may exist. Second, further research is 
needed to assess whether China’s gains in novelty and impact are primarily a reflection of the sheer volume of 
research output or reflect truly disruptive breakthroughs. For this, future research could investigate the qualitative 
nature of AI-enhanced discoveries across different regions. 
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Figure 6. The effect of AI on novelty and impact, by geographical areas 

 

 

Notes: The plot represents the odd ratios from Logit models estimating the effects of AI on novelty (Panel A) and impact (Panel 
B), separately for China, the UE, and the US. The econometric models are equivalent to those presented in Tables 3 and 4. 
Vertical bars indicate 95% confidence intervals.  

4.2.3. Differences across fields  

Do the benefits of AI vary by the degree of combinatorial complexity within a field? The estimates presented 
in Tables 5 and 6 provide partial support for this hypothesis. 

We conducted two complementary analyses. First, we estimated the same models as above but introduced 
an interaction term between AI and the yearly mean field roughness (AI × Field Roughness); hence, the 
interaction term allows us to assess whether the effect of AI on novelty and impact is amplified or diminished 
in fields with higher combinatorial complexity. Second, we estimated separated models on subsamples 
classified as “low roughness” and “high roughness”, where a field is categorized based on whether its 
roughness score falls below or above the yearly median, respectively. The results of this second exercise 
are reported in Appendix C. 

The estimates in Table 5 confirm a reinforcing effect of AI on the introduction of new words and phrases 
(Columns 1 and 2), as well as their combinations (Columns 3 and 4), in fields with a high degree of 
combinatorial complexity, suggesting that AI plays a stronger role in fostering novelty in more fragmented 
knowledge spaces. To our knowledge, this is the first empirical evidence supporting theoretical predictions 
from recent models of search and discovery with intelligent machines over vast and complex combinatorial 
design spaces (see, e.g., Agrawal et al., 2018; Agrawal et al., 2024; Besiroglu et al., 2024). The robustness 
checks reported in Appendix C (Table C2) further support these findings, showing that AI has little to no 
effects on novelty in dense, well-connected knowledge space, whereas its effects are highly significant and 
positive in fields where knowledge elements are sparse and more disconnected.  
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Table 5. The effect of AI on novelty, by field “roughness” (interaction term) 

 New Words New Words  

Comb. 

New Phrases New Phrases  

Comb. 

Semantic 
Distance 

 (1) (2) (3) (4) (5) 

AI 0.061***  
(0.011) 

0.085***  
(0.006) 

0.080***  
(0.006) 

0.166***  
(0.006) 

0.006*** 
(0.0001) 

Field Roughness 0.030 
(0.018) 

-0.040*** 

 (0.010) 
-0.016*  
(0.009) 

-0.052***  
(0.010) 

0.001*** 
(0.0002) 

AI × Field Roughness 0.059***  
(0.017) 

0.072***  
(0.009) 

0.083***  
(0.009) 

0.093***  
(0.009) 

-0.002*** 
(0.0002) 

Nb. Authors 0.029***  
(0.001) 

0.036***  
(0.001) 

0.061***  
(0.001) 

0.068***  
(0.001) 

-0.0003*** 
(0.00001) 

Nb. References 0.015***  
(0.003) 

0.099***  
(0.001) 

0.192***  
(0.001) 

0.250***  
(0.001) 

-0.001*** 
(0.00002) 

International Collab. 0.097***  
(0.010) 

0.073***  
(0.006) 

0.123***  
(0.006) 

0.114***  
(0.006) 

0.001*** 
(0.0001) 

Survey/Review -0.289***  
(0.043) 

-0.256***  
(0.021) 

-0.352***  
(0.016) 

-0.287***  
(0.017) 

0.001*** 
(0.0003) 

Adjusted R2     0.160 

Log Likelihood -280,795 -727,025 -812,721 -715,745  

AIC 561,806 1,454,268 1,625,659 1,431,706  

# Observations 1,374,533 1,374,533 1,374,533 1,374,533 1,374,533 

Notes: The econometric models for evaluating the interaction between AI and field roughness on various indicators of novelty. 
Parameters in Columns 1–4 are estimated via Logit models, while those in Column 5 via OLS regression. All specifications 
include fixed effects for time and scientific fields. The asterisks ***, **, and * denote statistical significance at the 1%, 5%, and 10% 
levels, respectively. 

The negative sign of the interaction term for semantic distance (Column 5) might seem ambiguous, but in 
our judgment, it is particularly interesting. Recall that semantic distance primarily captures textual similarity, 
which can be different from conceptual novelty. Indeed, a lower semantic distance does not necessarily 
mean that the content is less novel but may instead indicate that AI-research tends to preserve some 
linguistic conventions (writing styles, framing of ideas, etc.) which are closer to the existing literature. Seen 
from this perspective, one possible explanation is that for novel research to be understandable and 
communicable within the scientific community, it must first be anchored in established scientific language. 
In other words, the balance between novelty and readability could explain why AI papers in complex 
knowledge spaces introduce new terminology but exhibit lower semantic distance. 

Moving to the effects on citation counts, as shown in Table 6, we find no interaction effects. If anything, there 
appears to be a negative effect, albeit small in magnitude, on weighted number of citations (Column 1). 
These results partially contradict the estimates presented in Appendix C (Table C3), where the coefficients 
on AI are systematically higher in the sample comprising fields with a higher combinatorial complexity. Yet, 
given these discrepancies, we refrain from drawing robust conclusions on the relationship between AI 
adoption and citation-based impact across different knowledge landscapes. 
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Table 6. AI on impact, by field “roughness” (interaction term) 

 Weighted Nb. 
Citations 

Top Cited (10%) Top Cited (5%) Top Cited (1%) 

 (1) (2) (3) (4) 

AI 0.035***  
(0.001) 

0.165***  
(0.006) 

0.216***  
(0.008) 

0.337***  
(0.016) 

Field Roughness 0.140***  
(0.002) 

-0.304***  
(0.010) 

-0.303***  
(0.014) 

-0.302***  
(0.029) 

AI × Field Roughness -0.011***  
(0.002) 

0.009  
(0.009) 

0.017  
(0.012) 

0.012  
(0.024) 

Nb. Authors 0.032***  
(0.0001) 

0.088***  
(0.001) 

0.077***  
(0.001) 

0.057***  
(0.001) 

Nb. References 0.282***  
(0.0003) 

1.134***  
(0.003) 

1.152***  
(0.004) 

1.181*** 

(0.008) 

International Collab. 0.192***  
(0.001) 

0.390***  
(0.005) 

0.412***  
(0.007) 

0.485***  
(0.014) 

Survey/Review 0.135***  
(0.004) 

0.387***  
(0.017) 

0.484***  
(0.021) 

0.847***  
(0.033) 

Adjusted R2 0.410    

Log Likelihood  -723,147 -456,482 -137,085 

AIC  1,446,512 913,180 274,386 

# Observations 2,846,014 2,846,014 2,846,014 2,846,014 

Notes: The econometric models for evaluating the interaction between AI and field roughness on various indicators of impact. 
Parameters in Column 1 are estimated via OLS regression, while those in Columns 2–4 via Logit models. All specifications 
include fixed effects for time and scientific fields. The asterisks ***, **, and * denote statistical significance at the 1%, 5%, and 10% 
levels, respectively. 
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5. Conclusion 

AI is no longer confined to niche applications; from A for Archaeology to Z for Zoology, it is now (re)shaping 
research across disciplines and throughout the scientific workflow. Its transformative and far-reaching nature 
makes it a powerful “method of invention”, one that could help pull science out of the productivity slump of 
recent decades. But with big promises come big challenges, and as we have discussed in this paper, AI 
could just as easily hinder scientific progress as accelerate it. 

Overall, our results offer an optimistic perspective on the benefits AI can bring to scientific creativity – 
acknowledging, of course, the inherent limitations of measuring such effects through bibliometric indicators 
of novelty and impact, as done in our study. Importantly, we also find that the influence of AI does not depend 
just on the technology itself, but also on how, and where, it is used. In fact, two other main findings are worth 
noting. First, AI seems to have the biggest impact in fields where the knowledge space is sparse and 
complex, meaning more fragmented and disconnected ideas. Second, regional differences are striking: in 
recent years, China has taken the lead in AI-driven research, outpacing both the US and the EU, not just in 
sheer output, but also in terms of scientific novelty and impact. 

These findings have implications for policy, on the one hand, and for deeper philosophical and 
epistemological questions about what it means to “be a scientist” in the age of intelligent machines, on the 
other.  

Let us start with the first point. While securing strategic advantage in AI research is a shared priority for most 
governments – and the application of AI for R&D is implicit in policy agendas aimed at strengthening 
research and industrial competitiveness – most national AI strategies pay limited explicit attention to the role 
of AI in science. A review of 32 national AI strategies found that very few included concrete measures to 
support AI in scientific research (OECD AI Policy Observatory 2024). Beyond this gap, the uneven 
distribution of AI’s benefits across disciplines documented in this study raises important policy 
considerations. Indeed, it may suggest that some disciplines may be underutilising AI’s potential, hence 
calling for targeted interventions to encourage both adoption and effective use. Policies could support these 
fields through financial incentives, improved infrastructure, and specialised training programs tailored to their 
unique needs. However, there is little to no systematic evidence on what funding streams are most effective 
to support the immediate deployment of existing AI capabilities and longer-term core AI research; what the 
actual infrastructures needs are across different application domains (e.g., computing power and data 
access); and how best to design advanced training programs to enhance AI literacy and skills among 
researchers. This gap is clearly a call for future research, which could extend and complement our analysis 
in several ways: first, by incorporating more recent data and thus capturing the latest technological 
development (in primis GenAI and LLMs, but also very recent reasoning models); second, by broadening 
the scope to additional scientific fields, ideally with a different degree of granularity as we have done here; 
third, by exploring alternative metrics of scientific outcomes and productivity; finally, by employing causal 
inference approaches to assess the effects of AI-oriented grants, access to computing facilities, or other 
institutional interventions aimed at fostering the adoption of AI in science. Of course, this list is far from 
exhaustive.  

As discussed in this paper, the perils of AI are real and significant, and cannot be overlooked. The impressive 
acceleration in both the capabilities and popularity of AI systems has been accompanied by increasing fears 
regarding human ability to keep this fast-evolving technology under control. Policymaking, therefore, must 
remain agile and responsive to the emerging challenges, striking a delicate balance between incentives for 
AI-driven science and containment of risks linked to, among others, the black-box nature of complex AI/ML 
models, as well as potential misuses and biases, and research governance. Indeed, wider adoption of AI for 
science brings with it new challenges for research governance, including concerns about AI’s impact on 
research integrity and ethics (Resnik and Hosseini, 2024). In 2024, the European Commission published 
some guidelines on the responsible use of AI in science, outlining four basic principles: reliability (to ensure 
research quality), honesty (in reporting where and how AI has been used), respect (for the range of 
stakeholders that might be affected by AI in research), and accountability (for the use of AI and its outputs). 
But there is a need for practical guidance, which need to be domain-specific to gain traction. While high-
level principles are clearly valuable in setting a direction of travel, their practical implementation will require 
translation to specific scientific contexts.   

For the first time in history, scientists are confronted with a form of intelligence that, in many ways, mirrors 
our own in complexity and capability. This unprecedented interaction offers, therefore, an opportunity for 
introspection and self-examination: what makes us, as human scientists, different from intelligent machines? 
True, intelligence may be ever-increasing among machines, but genuinely creative intuitive thinking requires 
making mistakes, abandoning logic from one moment to the next, and learning through unpredictability. This 
is because our brains are a complex mix of determinism, chaos, and randomness, and current AI, despite 
its sophistication, still falls short in this respect. 

Another aspect is vision, not to be confused with mere sight. Machines lacks (at least so far) vision: they do 
not independently decide to explore distant galaxies, though they excel at processing astronomical data 
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once directed to do so; machines are better than most scientists at solving complex problems in calculus 
and quantum mechanics, yet they do not have the vision to see the need for such constructs in the first 
place. 

Bottom line: to solve the great mysteries of nature, we will probably need intelligences other than human. 
The use of AI in science, thus, will move from a luxury to a necessity. But science is not just about answering 
questions, it is also about asking the right ones. 
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7. Appendix 

7.1. Appendix A. Data processing 

In this research, we aim to study the diffusion and impact of AI at a more granular level, moving beyond 
broad macro-disciplines (e.g., Chemistry, Medicine, Physics). However, this comes with a trade-off: the 
deeper we go, the more complex it becomes to manage field taxonomy. As of August 2024, OpenAlex lists 
21,455 concepts at level-2 and 24,749 at level-3, making it impractical for the type of analysis and reporting 
conducted in this study. 

We implemented a protocol to retrieve data by first ranking scientific fields (concept level-1) based on two 
criteria: (1) AI penetration, measured as the share of publications associated with AI (i.e., those classified 
under level-1 concepts ‘Artificial Intelligence’ or ‘Machine Learning’, or containing at least one of their 400+ 
sub-concepts], and (2) the total volume of scientific publications in each field. 

Table A1. Data pipeline for the selection of scientific fields  

 

From these rankings, we selected the top fields in each category – those with the highest AI penetration (left 
arm of Figure A1) and those with the highest publication volume (right arm). Thus, this approach ensures 
that our dataset contains both fields where AI is already widely integrated and those with intense research 
activity, even if AI adoption is still emerging. 

Next, for each selected level-1 concept, we identified and ranked subfields (level-2 concepts) using the same 
criteria: AI share and publication volume. Since each document may be associated with multiple concepts, 
some subfields overlap across different rankings.  

A final note concerns the fields ‘Cancer’, ‘Disease’, and ‘Gene’. Despite being classified as level-2, these 
fields cover between 2 to 4 million articles and are in fact too broad for our analysis. To refine our selection, 
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we moved to level-3 and replicate the same approach, namely ranking subfields based on AI penetration 
and publication volume.  

Recognising that there is no single best way to sample the data from OpenAlex, we tested the robustness 
of our findings using stricter criteria. For example, we experimented with a more conservative classification 
of AI papers by requiring their AI or ML concepts and sub-concepts score to exceed the arbitrary threshold 
of 0.5. We also replicated the analysis while excluding concepts with exceptionally high AI share or total 
publication volume, and explored alternative ranking methods. All these results are available upon request.   

Table A2. Description of selected scientific fields 

OpenAlex 
Code 

Label Description / Example of AI applications Count  

[% AI/ML] 

C6856738 

 

 

Protein Expression† 

 

Producing specific proteins for research, therapeutic, or 
industrial use 

 

AI predicts optimal conditions for protein synthesis in 
bioreactors 

15,695 

[2.85] 

C10679952 

 

Druggability† 

 

Identifying biological targets that can bind effectively with 
drugs 

 

AI identifies potential drug-binding sites on protein 
structures 

4,039 

[4.46] 

C15952604 

 

Project Management 

 

Achieving project objectives through structured processes 

 

AI optimizes schedules and resource allocation based on 
historical project data 

58,914 

[28.12] 

C18020424 

 

Autopilot 

 

Automating vehicle navigation without manual control 

 

Self-driving cars use AI to maintain lane and avoid 
obstacles 

5,203 

[77.07] 

C18483071 

 

Anchoring 

 

Understanding decision-making biases from initial 
information 

 

AI analyzes how initial product reviews or ratings influence 
purchasing decisions 

9,637 

[15.02] 

C20702342 

 

Cryo-electron 
Microscopy 

 

Imaging molecular structures at near-atomic resolution 
under cryogenic conditions 

 

AI reconstructs 3D molecular structures from 2D 
microscopy images 

3,174 

[35.07] 

C22762622 

 

Operating Point 

 

Optimizing device performance by identifying critical 
operational conditions 

 

AI adjusts the speed and energy consumption of industrial 
robots on an assembly line 

4,726 

[84.36] 

C23085057 

 

Genetic Analysis† 

 

Detecting DNA mutations to predict risks or optimize 
treatments 

 

AI identifies disease-related genetic mutations from DNA 
sequences 

6,287 

[5.15] 

C40506919 

 

Sequence Learning 

 

Exploring how humans learn and recall sequential 
information 

 

AI analyzes sequences of spoken words to simulate how 
children acquire grammar rules 

2,919 

[100.00] 

C46362747 CMOS Creating efficient integrated circuits for electronics 299,019 
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AI designs optimized transistor layouts in circuit 
simulations 

[22.80] 

C47042493 

 

Human Genetics† 

 

Understanding genes, heredity, and human genetic 
variations 

 

AI predicts genetic predisposition to diseases based on 
genome data 

16,951 

[3.89] 

C51399673 

 

LiDAR 

 

Mapping environments using laser-based imaging 
technology 

AI processes LiDAR data for autonomous vehicle 
navigation 

57,382 

[42.85] 

C51456166 

 

Genetically Modified 
Organism (GMO)† 

 

Altering organisms’ genes for desired traits 

 

ML suggests genetic edits to improve crop yield 

11,173 

[5.19] 

C52121051 

 

Truck 

 

Optimizing the design and operation of commercial 
vehicles 

 

AI-powered fleet management optimizes delivery routes 

58,954 

[19.88] 

C60627051 

 

Body Shape 

 

Studying human form based on skeletal and muscular 
structure 

 

AI estimates body composition from medical imaging 

1,908 

[100.00] 

C64228939 

 

Remotely Operated 
Vehicle (ROV) 

 

Developing or using ROVs to explore underwater 
environments via remote-controlled devices 

 

AI assists in underwater object recognition 

1,853 

[89.85] 

C64413873 

 

Threshold Limit Value 
(TLV) 

 

Defining safe exposure levels to hazardous substances 

 

AI analyzes historical workplace exposure data and real-
time readings from air quality sensors 

2,819 

[64.14] 

C64474127 

 

Medical Genetics† 

 

Diagnosing and managing hereditary diseases 

 

AI identifies mutations linked to familial breast cancer 

6,188 

[4.09] 

C64754055 

 

Spatial Contextual 
Awareness 

 

Leveraging location-based data for computing and 
decision-making 

 

AI enhances AR applications with location-based data 

4,839 

[100.00] 

C66283442 

 

Failure Mode and 
Effects Analysis 
(FMEA) 

 

Preventing system failures by identifying potential issues 

 

AI monitors vibration and temperature data from industrial 
machinery to predict failures 

24,223 

[18.91] 

C74172769 

 

Electronic Design 
Automation (EDA) 

 

Streamlining electronic circuit design processes 

 

AI analyzes circuit designs to automatically detect errors 
and optimize layouts 

177,430 

[26.06] 

C78639753 

 

Behavioral Modeling 

 

Analyzing systems through behavioral patterns 

 

AI models customer behavior in e-commerce 

3,011 

[100.00] 

C87360688 

 

Synthetic Aperture 
Radar (SAR)  

Capturing high-resolution radar imagery 

 

AI interprets radar images for environmental monitoring 

67,258 

[100.00] 
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C90130585 

 

Electronic Skin 

 

Developing skin-mimicking technologies for sensors 

 

AI decodes tactile data from e-skin sensors for prosthetics 

1,096 

[46.62] 

C94487597 

 

Sensory System 

 

Processing sensory input in living organisms 

 

AI helps a robotic hand adjust its grip based on the weight 
of an object it is holding 

87,997 

[24.65] 

C96250715 

 

Project Estimation 

 

Forecasting resources and time for project completion 

 

AI predicts timelines and costs of new projects 

166,415 

[42.47] 

C99398487 

 

Cardiac Cycle 

 

Understanding the phases of heart function during a 
heartbeat 

 

AI detects arrhythmias in ECG data 

7,085 

[27.30] 

C111829913 

 

Gene Targeting† 

 

Modifying specific genes via homologous recombination 

 

AI suggests gene-editing targets for CRISPR applications 

3,192 

[0.75] 

C129364497 

 

Prognostics 

 

Predicting system failures or maintenance needs 

 

AI forecasts machine part failures for predictive 
maintenance 

5,731 

[57.93] 

C132010649 

 

Intuition 

 

Gaining insights without recourse to conscious reasoning 

 

AI mimics human intuitive decision-making in games like 
Go 

24,958 

[34.13] 

C138171918 

 

Diesel Fuel 

 

Powering engines using efficient liquid fuels 

 

AI optimizes fuel injection rates and air intake in a diesel 
engine to reduce emissions 

98,845 

[10.57] 

C139489369 

 

Structural Similarity 

 

Measuring image or video quality based on human 
perception 

 

AI evaluates image quality in video streaming 

3,152 

[100.00] 

C140096630 

 

Damper 

 

Controlling airflow or energy dissipation in systems 

 

AI adjusts damper settings for improved HVAC efficiency 

37,740 

[50.85] 

C143916079 

 

Burnout (Automotive) 

 

Analyzing tire behavior, traction, and heat generation 
during burnouts 

 

AI systems detect burnout through tire and traction analysis 
to study material durability 

54,864 

[14.44] 

C148381915 

 

Automobile Handling 

 

Assessing how vehicles respond to driver inputs 

 

AI optimizes suspension settings for performance vehicles 

2,838 

[86.47] 

C148699463 

 

SSS* 

 

Optimizing search efficiency in algorithms 

 

AI enhances heuristic search algorithms for large-scale 
scheduling problems in airline operations 

4,235 

[100.00] 

C159334719 

 

Activity Theory 

 

Examining human activities in societal and systemic 
contexts 

 

1,877 

[39.53] 
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AI analyzes user interactions in educational software 

C170477896 

 

Ideation 

 

Generating and refining creative ideas 

 

Generative AI creates innovative designs for product 
development 

6,046 

[30.57] 

C171897839 

 

Protein Family† 

 

Understanding evolutionary relationships among proteins 

 

AI classifies protein families based on sequence similarities 

3,039 

[13.92] 

C183776436 

 

Rudder 

 

Controlling direction in air or water vehicles 

 

AI stabilizes rudder control in autonomous ships 

4,752 

[56.92] 

C185798385 

 

Survey Benchmark Providing reference points for geographic measurements 

 

AI improves geospatial mapping using drone data 

163,763 

[68.03] 

C187691185 

 

Grid 

 

Dividing surfaces for mapping or data indexing 

 

AI optimizes grid layouts for efficient urban planning 

270,622 

[41.71] 

C201797286 

 

Biological Data 

 

Collecting and analyzing data for biological insights 

 

AI identifies patterns in omics datasets for biomedical 
research 

3,584 

[68.69] 

C203357204 

 

Chunking 

 

Studying how people group related information to enhance 
memory 

 

AI powers adaptive learning platforms that group related 
concepts based on a student’s learning pace 

2,005 

[100.00] 

C204315192† Molecular Genetics 

 

Studying genes at the molecular level 

 

AI predicts genetic expressions from molecular data 

2,708 

[3.58] 

C553089730† 

 

Binding Protein 

 

Understanding DNA-protein interactions 

 

AI analyzes DNA sequences and protein structures to 
predict binding sites and affinities 

2,388 

[0.25] 

C2776356578 

 

Neuromuscular 
Disease† 

Researching disorders affecting muscle-controlling nerves 

 

AI detects early signs of ALS from movement data 

3,385 

[2.27] 

C2776463041 

 

Cancer Screening† 

 

Detecting cancer early in asymptomatic individuals 

 

AI identifies early cancer markers in imaging scans 

9,140 

[14.07] 

C2777002142 

 

Cancer Biomarkers† 

 

Identifying substances indicating cancer presence 

 

AI discovers new biomarkers using genomic data 

1,848 

[3.35] 

C2777474118 

 

Tropical Disease† 

 

Studying diseases common in tropical regions 

 

AI maps disease outbreaks based on environmental data 

3,426 

[3.82] 

C2777522853 

 

Digital Pathology 

 

Managing pathology data digitally for better diagnostics 

 

AI processes histology slides to identify cancerous cells 

2,910 

[100.00] 

C2777526511 Pace Unit Measuring length in human steps  64,171 
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AI improves wearable step-counting and heart rate 
accuracy 

[20.64] 

C2779356329 

 

Checklist 

 

Studying workflows and human behavior to design and 
optimize standardized procedures 

 

AI analyzes past aviation data to suggest improvements to 
checklists to reduce errors 

64,066 

[12.57] 

C2779435589 

 

Heart Sounds 

 

Analyzing acoustic signals of heart function 

 

AI analyzes heart sounds to detect murmurs 

2,247 

[62.66] 

C2779679103 

 

Signal Degradation Mitigating quality loss in electronic signals 

 

AI enhances degraded audio or video signals 

169,908 

[6.56] 

C2779701055 

 

Rare Disease† 

 

Researching diseases affecting small populations 

 

AI identifies rare disease cases from sparse datasets 

13,025 

[1.04] 

C2779706800 

 

Human Enhancement 

 

Improving physical or mental abilities using technology 

 

AI aids cognitive enhancement through neurofeedback 

1,380 

[100.00] 

C2779918689 

 

Stimulus  

 

Studying how organisms respond to environmental triggers 

 

AI models neural responses to visual stimuli 

96,159 

[36.83] 

C2780130745 

 

Neuropathology† 

 

Diagnosing diseases in nervous system tissues 

 

AI identifies brain abnormalities in imaging data 

10,382 

[3.33] 

C2780234812 

 

Cancer Prevention† 

 

Reducing cancer risk through proactive measures 

 

AI designs lifestyle interventions to reduce cancer risk 

8,418 

[7.23] 

C2780443751 

 

Material Selection 

 

Choosing materials for specific applications 

 

AI recommends optimal materials for 3D printing 

4,035 

[55.86] 

C2780451532 

 

Task Assignment 

 

Allocating tasks effectively to achieve goals 

 

AI distributes workloads for efficient team performance 

524,246 

[56.72] 

C2780596555 

 

Amyotrophic Lateral 
Sclerosis (ALS)† 

 

Researching and managing neurodegenerative diseases 

 

AI predicts ALS progression from patient data 

25,175 

[4.37] 

C2780841897 

 

Digital Manufacturing 

 

Using computer technology to optimize manufacturing 
processes 

 

AI analyzes real-time production data to adjust machine 
speeds 

1,450 

[28.96] 

C2781220375 

 

Flocking 

 

Studying the coordinated movement of individual agents 

 

AI optimizes flocking behaviors in drone swarms 

3,310 

[68.28] 

C2781230642 

 

Targeted Therapy† 

 

Developing drugs targeting specific disease pathways 

 

ML identifies drug targets specific to cancer cell pathways 

16,484 

[1.56] 
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C2982912361 

 

Mental Model 

 

Simulating scenarios mentally to anticipate outcomes 

 

AI creates virtual simulations to train mental models for 
pilots 

4,174 

[37.99] 

C2983137510 

 

Material Handling 

 

Managing materials efficiently during production and 
distribution 

 

AI automates warehouse logistics for inventory 
management 

1,968 

[37.30] 

C2983331546 

 

Cancer Therapy† 

 

Treating cancer using various therapeutic methods 

 

AI personalizes cancer treatments based on patient 
profiles 

14,111 

[2.93] 

C2985179714 

 

Workflow 
Management 

 

Streamlining processes and resource allocation 

 

AI prioritizes tickets based on urgency and automates 
responses for common queries 

3,792 

[24.84] 

C2985322473 

 

Cancer Detection† 

 

Diagnosing cancer in symptomatic individuals or 
individuals with an elevated risk  

 

AI classifies cancer types from biopsy samples 

5,609 

[31.41] 

C2988168687 

 

Skin Lesion 

 

Studying skin disorders or abnormalities 

 

AI detects melanoma from skin lesion images 

4,244 

[33.98] 

C2989108626 

 

Drug Target 

 

Investigating molecular targets for therapeutic intervention 

 

AI predicts potential drug targets in pathogens 

1,931 

[33.20] 

 

C2992972558 

 

Blood Cancer† 

 

Understanding and treating cancers of blood or bone 
marrow 

 

AI aids in diagnosing leukemia from blood samples 

1,581 

[7.78] 

C2993153387 

 

Genetic Diagnosis† 

 

Identifying genetic causes of diseases 

 

AI analyzes genetic data for precise diagnoses 

1,600 

[5.81] 

C2994114330 

 

Cancer Imaging† 

 

Visualizing cancer using medical imaging tools 

 

AI enhances tumor visualization in MRI scans 

1,463 

[18.93] 

C3018284874 

 

Cardiovascular 
Health† 

 

Promoting heart and blood vessel health 

 

AI predicts cardiovascular events from wearable data 

5,079 

[8.92] 

C3019111730 

 

Genetic Engineering† 

 

Manipulating genomes for research or applications 

 

AI designs synthetic genes for biotech applications 

3,958 

[3.39] 

C3019816032 

 

Cancer Treatment† 

 

Exploring methods to treat cancer effectively 

 

AI predicts cancer response to immunotherapy 

7,587 

[5.71] 

C3020597237 

 

Production Rate 

 

Measuring the movement of inputs and outputs in 
manufacturing systems 

 

AI forecasts production bottlenecks in real time 

4,506 

[12.52] 
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Total 

 

  2,889,302 

[36.55] 

Note: † Concept at level 3 

7.2. Appendix B. Combinatorial complexity of a scientific field  

We used the indicator proposed by Lee et al. (2015), which relies on comparing the observed frequency of 
knowledge combinations with their expected frequency in a given year. The methodology involves the 
following steps: 

1. Construct the co-citation network 

o Each scientific paper cites a set of references. Let FP be a focal paper citing references A, 
B, C, etc. 

o Each pair of cited references (A, B), (A, C), (B, C), etc. forms a knowledge combination. 

2. Compute observed frequency 

o The observed frequency 𝑤𝑡(𝑉𝑖 , 𝑉𝑗) of a combination (𝑉𝑖 , 𝑉𝑗) in year t is the actual number of 

times this pair has been cited together in papers from the same year. 

3. Compute expected frequency 

o The expected frequency of a combination is based on a null model: 
𝑘𝑖×𝑘𝑗

𝑁𝑡
  where 𝑘𝑖 and 𝑘𝑗 

are the degrees (citation counts) of references i and j, respectively, and 𝑁𝑡 is the total 
number of reference pairs in year t. 

o The formula assumes a random combination model, meaning that if references were cited 
randomly, their expected co-occurrence should be proportional to their overall citation 
frequency. 

4. Calculate the commonness score for each combination 

o The commonness score for a pair (𝑖, 𝑗) is given by: commonness𝑖𝑗𝑡 =
𝑤𝑡(𝑉𝑖,𝑉𝑗)×𝑁𝑡

𝑘𝑖×𝑘𝑗
 

o A high value means the combination is frequently used (common), while a low value means 
the combination is rarely used (uncommon). 

5. Aggregate at the paper level 

o For each focal paper FP, the 10th percentile of the commonness distribution of all its 

reference pairs is computed: commonness𝐹𝑃 = −log⁡(𝑃10(𝐶𝐹𝑃)) 

o The negative log transformation ensures that lower commonness values (i.e., rarer 
combinations) receive higher scores 

6. Aggregate at the field level 

o To measure the combinatorial complexity, or “roughness”, of a scientific field, we compute 
the mean commonness score across all papers in that field. 

o Higher values indicate a more fragmented knowledge structure. 
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7.3. Appendix C. Supplementary statistics and analysis 

Table C1. Descriptive statistics of the variables used in this study 

 Mean Min Med Max 

New Words 0.10 0 0 1 

New Words Combinations 0.70 0 1 1 

New Phrases 0.20 0 0 1 

New Phrases Combinations 0.70 0 1 1 

Semantic Distance 0.10 0 0.20 0.50 

Weighted Nb. Citations 2.48 0 0.33 996.45 

Top Cited (10%) 0.10 0 0 1 

Top Cited (5%) 0.05 0 0 1 

Top Cited (1%) 0.01 0 0 1 

AI 0.36 0 0 1 

Field Roughness 0.30 -4.15 0.44 3.04 

Nb. Authors 3.47 1 3 100 

Nb. References 18.34 0 10.00 5,499 

International Collab. 0.12 0 0 1 

Survey/Review 0.01 0 0 1 

Notes: Statistics are calculated on the full sample. 

 

Figure C1. Trend and growth rate in research productivity 

 

Notes: Panel A: Research productivity is measured as the ratio of the number of scientific publications to the number of unique 
authors per year. Panel B: Growth of research productivity is calculated as 3-year rolling averages. Figures start from 2010 to 
focus on recent trends and minimize noise caused by smaller sample sizes in earlier years. Based on our own elaboration. 
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Figure C2. Mean differences between indicators of novelty and impact for AI and other papers, lvl.1 

 

Notes: The plot compares the mean difference between AI papers and other scientific publications across various indicators of 
novelty and impact (x-axis) and scientific fields (y-axis). All variables are standardized to facilitate comparison across indicators. 
Darker shades of red indicate that AI papers exhibit a higher mean for a given indicator compared to non-AI papers, while blue 
shades indicate the opposite. Based on our own elaboration. 

 

Figure C3. Odds ratio for impact indicators 

 

Notes: The plot represents the odd ratios from Logit models estimating the effects of AI on impact for different citation thresholds 
– see Table 4 in the main text. Vertical bars indicate 95% confidence intervals.
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Table C2. The effect of AI on novelty, by field “roughness” (low vs. high) 

 

 New Words New Words Comb. New Phrases New Phrases Comb. Semantic Distance 

 (1) 

Low 

(2) 

High 

(3) 

Low 

(4) 

High 

(5) 

Low 

(6) 

High 

(7) 

Low 

(8) 

High 

(9) 

Low 

(10) 

High 

AI 0.042**  
(0.016) 

0.096***  
(0.011) 

0.021**  
(0.009) 

0.139***  

(0.005) 
0.036***  
(0.009) 

0.141***  
(0.006) 

0.090***  
(0.010) 

0.235***  
(0.006) 

0.006*** 
(0.0002) 

0.004*** 
(0.0001) 

Nb. Authors 0.023***  
(0.001) 

0.035***  
(0.001) 

0.052***  
(0.001) 

0.065***  
(0.001) 

0.028***  
(0.001) 

0.042***  
(0.001) 

0.054*** 

(0.002) 
0.075***  
(0.001) 

-0.0002*** 
(0.00002) 

-0.0005*** 
(0.00001) 

Nb. References -0.008*  
(0.004) 

0.030***  
(0.009) 

0.167***  
(0.002) 

0.204***  
(0.002) 

0.080***  
(0.003) 

0.108***  
(0.002) 

0.220***  
(0.003) 

0.263***  
(0.002) 

-0.002*** 
(0.00004) 

-0.001*** 
(0.00003) 

International Collab. 0.103***  
(0.019) 

0.089***  
(0.014) 

0.140***  
(0.011) 

0.115***  
(0.007) 

0.094***  
(0.010) 

0.059***  
(0.007) 

0.142***  
(0.012) 

0.101***  
(0.007) 

0.0001 
(0.0002) 

0.001*** 
(0.0001) 

Survey/Review -0.133***  
(0.064) 

-0.404***  
(0.057) 

-0.332***  
(0.029) 

-0.364***  
(0.020) 

-0.216*** 
(0.036) 

-0.280***  

(0.027) 
-0.264*** 
(0.030) 

-0.301***  
(0.021) 

-0.005 
(0.001) 

0.002*** 
(0.0004) 

Adjusted R2         0.160 0.156 

Log Likelihood -100,760 -179,881 -245,788 -566,513 -240,506 -486,144 -214,523 -500,677   

AIC 201,696 359,939 491,752 1,133,203 481,188 972,465 429,222 1,001,531   

# Observations 428,107 946,426 428,107 946,426 428,107 946,426 428,107 946,426 428,107 946,426 

Notes: The econometric models for evaluating the effect of AI on various indicators of novelty across two levels of field roughness: low and high. Parameters in Columns 1–8 are estimated via OLS regression, 
while those in Columns 9–10 via Logit models. All specifications include fixed effects for time and scientific fields. The asterisks ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, 
respectively.



 

40 

Table C3. The effect of AI on impact, by field “roughness” (low vs. high) 

 Weighted Nb. Citations Top Cited (10%) Top Cited (5%) Top Cited (1%) 

 (1) 

Low 

(2) 

High 

(3) 

Low 

(4) 

High 

(5) 

Low 

(6) 

High 

(7) 

Low 

(8) 

High 

AI 0.030*** 
(0.002) 

0.027*** 
(0.001) 

0.132*** 
(0.009) 

0.183*** 
(0.006) 

0.155*** 
(0.012) 

0.250*** 
(0.008) 

0.254*** 
(0.025) 

0.381*** 
(0.017) 

Nb. Authors 0.028*** 
(0.0002) 

0.035*** 
(0.0002) 

0.080*** 
(0.001) 

0.094*** 
(0.001) 

0.068*** 
(0.001) 

0.083*** 
(0.001) 

0.049*** 
(0.001) 

0.066*** 
(0.001) 

Nb. References 0.263*** 
(0.0005) 

0.290*** 
(0.0003) 

1.107*** 
(0.004) 

1.149*** 
(0.003) 

1.120*** 
(0.006) 

1.170*** 
(0.006) 

1.179*** 
(0.012) 

1.184*** 
(0.010) 

International Collab. 0.183*** 
(0.002) 

0.195*** 
(0.002) 

0.393*** 
(0.010) 

0.387*** 
(0.006) 

0.420*** 
(0.012) 

0.406*** 
(0.008) 

0.487*** 
(0.024) 

0.479*** 
(0.017) 

Survey/Review 0.096*** 
(0.006) 

0.152*** 
(0.004) 

0.300*** 
(0.032) 

0.424*** 
(0.424) 

0.440*** 
(0.038) 

0.502*** 
(0.025) 

0.852*** 
(0.061) 

0.847*** 
(0.040) 

Adjusted R2 0.388 0.414       

Log Likelihood   -236,457 -486,499 -148,970 -307,395 -44,873 -92,143 

AIC   473,090 973,174 298,116 614,967 89,922 184,463 

# Observations 928,952 1,917,062 928,952 1,917,062 928,952 1,917,062 928,952 1,917,062 

Notes: The econometric models for evaluating the effect of AI on various indicators of impact across two levels of 
field roughness: low and high. Parameters in Columns 1–2 are estimated via OLS regression, while those in Columns 
3–8 via Logit models. All specifications include fixed effects for time and scientific fields. The asterisks ***, **, and * 
denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
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The paper explores the impact of AI on scientific creativity, 
examining its use across 80 fields from 2000 to 2022. AI adoption 
has surged in nearly all areas since the early 2010s, although 
striking regional differences emerge. In recent years, China has 
taken the lead in AI-driven research, outpacing both the US and 
the EU, not just in sheer output, but also in terms of scientific 
novelty and impact. The study concludes that AI generally 
enhances scientific creativity, measured by novelty and impact, 
though the effects vary by field. Most fields benefit from AI 
applications, although great heterogeneity is observed with some 
fields seeing little to no improvement, and a few experiencing 
negative impacts. The influence of AI is moderated by the 
structural organisation of knowledge within fields, with greater 
potential in "rough" knowledge spaces where ideas are 
fragmented. These findings contribute to discussions on AI's role 
in science and are relevant to policy initiatives promoting AI-
driven research. 
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