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Abstract

The growing availability of high-quality Earth Observation (EO) data enables accurate global land cover and crop type
monitoring. However, the volume and heterogeneity of these datasets pose major processing and annotation challenges. To
address this, the French National Institute of Geographical and Forest Information (IGN) is actively exploring innovative
strategies to exploit diverse EO data, which require large annotated datasets. IGN introduces FLAIR-HUB, the largest multi-
sensor land cover dataset with very-high-resolution (20 cm) annotations, covering 2528 km² of France. It combines six aligned
modalities: aerial imagery, Sentinel-1/2 time series, SPOT imagery, topographic data, and historical aerial images. Extensive
benchmarks evaluate multimodal fusion and deep learning models (CNNs, transformers) for land cover or crop mapping
and also explore multi-task learning. Results underscore the complexity of multimodal fusion and fine-grained classification,
with best land cover performance (78.2% accuracy, 65.8% mIoU) achieved using nearly all modalities. FLAIR-HUB supports
supervised and multimodal pretraining, with data and code available at https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub.
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Dataset overview

Figures

➔ 63 202 918 400 pixels annotated at 0.20 m spatial resolution

➔ 241 100 patches (512×512)

➔ 74 spatio-temporal domains and 2 822 areas covering 2 528 km²

➔ 15 land cover semantic classes (+ 4 optional ones)

➔ 23/31/46 crop types in 3-level class hierarchy

➔ 256 221 Sentinel-2 acquisitions

➔ 532 696 Sentinel-1 acquisitions

➔ 1.6 m SPOT images aligned

➔ Aligned historical aerial images

➔ 20 cm resolution DSM and DTM aligned

Structure

FLAIR-HUB dataset

DOMAIN SENSOR DATATYPE

ROI

PATCH.tif

GLOBAL ALL MTD

GLOBAL MODALITY *.gpkg

I. Context

In recent years, remote sensing and Earth Observation (EO)
had a growing impact on many scientific fields and economic
sectors. Extracting information about the Earth’s surface from
the sky or space is a key research area. This topic is involved
in 11 of the 17 United Nations Sustainable Development Goals
[1, 2]. In particular, the automatic analysis of EO images plays
an important role in mapping human activities and their impact
on the environment. For example, it is useful for applying the
European regulation on products derived from deforestation
[3], for achieving France’s no net land take target [4, 5], or to
monitor soils degradation [6].

An increasing number of regional and national mapping
agencies deployed image recognition models to monitor ur-
banisation, agricultural and forestry areas, risk prevention,
and public policy [7, 8]. In this context the French National
Institute of Geographical and Forest Information (IGN) [9], in
response to the growing availability of high-quality EO data, is
actively exploring innovative strategies to integrate these data
with heterogeneous characteristics, especially to monitor land
cover and crop type across the territory of France and provide
reliable and up-to-date geographical reference datasets.

The FLAIR #1 dataset [10], which focused on aerial im-
agery for semantic segmentation, was released to facilitate
research in the field. Building upon this dataset, the FLAIR #2
dataset [11, 12] extends the capabilities by incorporating a new
input modality, namely Sentinel-2 satellite image time series,
and introduces a new test dataset. Both FLAIR #1 and #2
datasets are part of the currently used by IGN to produce the

French national land cover map reference Occupation du sol
à grande échelle (OCS-GE) [13].

In this paper, we introduce FLAIR-HUB, the increased
version of the ”French Land cover from Aerospace Im-
ageRy” dataset, the largest multi-sensor land-cover dataset
with very-high-resolution annotations. FLAIR-HUB combines
very-high-resolution (VHR, 20 cm) images, photogrammetry-
derived surface models, and optical Sentinel-2 and SAR
Sentinel-1 multi-spectral satellite time series, high-resolution
SPOT satellite images and historical analog aerial images from
the 1950’s.

These acquisitions’ diverse spatial, spectral, and temporal
resolutions offer valuable complementary perspectives for land
cover and crop analysis. Over 63 billion pixels have been hand-
annotated by geospatial experts, using a nomenclature of 19
land-cover classes and 23 crop type classes. The data spans
2 528 km2 across French sub-regions featuring diverse biocli-
matic attributes at various times of the year, thus displaying
complex and challenging domain shifts.

In addition to this new dataset, we provided an extensive
evaluation of the gain made with this dataset on different
experiments of multimodal fusion with a recent computer
vision backbone [14].

FLAIR-HUB combines heterogeneous and diverse data aim-
ing to foster the development of new large-scale semantic
segmentation methods. Given its scale and the complexity of
the task it exhibits, it presents an exciting challenge for the
machine learning communities. It is also an excellent dataset
for multimodal self-supervised methods [15, 16, 17, 18]
or data fusion methods [12, 19, 20] thanks to the spatial
alignment between modalities. It is also a dataset that will
evolve with the addition of new aligned modalities (e.g.,
hyperspectral, LIDAR) or new annotations (e.g., hedgerows,
land use classes).

II. Related Work

A. Semantic Segmentation for remote sensing imagery

Land cover and crop type mapping can be translated into
multi-classes pixel classification, also known as semantic seg-
mentation. For almost a decade, deep learning is the de facto
solution for semantic segmentation task [38], also in the case
of remote sensing imagery [39]. The communities have created
more efficient models based on artificial intelligence from
FCN [40] to UNet [41], DeepLab [42], Vision Transformer
[43] and Swin Transformer [14]. The objective was to find
a way to train bigger and better models by adding more
long-distance dependency in the inner features and more
parameters. This has been done by adding attention mechanics
and better optimization schemes.

B. Land cover datasets

Numerous land-cover datasets have been introduced to train
semantic segmentation methods, see Table I. Existing datasets
usually present a trade-off: they either offer high-resolution
annotations but cover a small extent (like Vaihingen [21]), or
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TABLE I: Land Cover Datasets. Publicly available datasets for semantic segmentation of land cover using optical remote sensing imagery. Topo refers to
topographic information such as DSM, DEM, or slope. ‡ : The FLAIR dataset is included in the new FLAIR-HUB dataset.

Dataset
Land Cover Annotation Acquisition

Pixels ×106 Resolution Classes Source Resolution Extent (km2) Source

Vaihingen [21] 82 8 cm 6 visual interpretation 8 cm 1 aerial

EuroSAT [22] 110 50 m 10 EU Urban Atlas [23] 10 m 11 059 Sentinel-2

MultiSenGE [24] 534 10 m 14 visual interpretation 10 m 57 433 Sentinel-1&-2

Landcovernet [25] 589 10 m 7 semi-automatic (MODIS [26]) 10 m 58 982 Sentinel-2

MiniFrance [27] 1 510 50 m 14 EU Urban Atlas [23] 50 cm 53 000 aerial

DynamicEarthNet [28] 1 889 3 m 7 visual interpretation 3 m 16 986 Sentinel-1&-2, PlanetFusion

LoopNet [29] 3 133 30 m 6 visual interpretation 30 m 2 820k Landsat 8

OpenEarthMap [30] 4 931 25–50 cm 8 visual interpretation 25–50 cm 799 aerial, UAV,, satellite

Five-Billion-Pixels [31] 5 000 4 m 24 visual interpretation 4 m 50 000 Gaofen-2

LoveDA [32] 6 000 30 cm 7 visual interpretation 30 cm 536 aerial

Dynamic World [33] 6 348 50m 9 semi-automatic / iteratif 10 m 634k Sentinel-2

DeepGlobe [34] 6 867 50 cm 7 visual interpretation 50 cm 1 717 Wordlview-2/3, GeoEye-1

BigEarthNet [35] 8 500 100 m 19 semi-automatic (CLC [36]) 10 m 850 k Sentinel-1&-2

FLAIR‡ [12] 20 385 20 cm 19 visual interpretation 20 cm / 10 m 817 aerial, Topo, Sentinel-2

CatLC [7] 25 600 1 m 41 visual interpretation 1 m 25 600 aerial, Sentinel-1&-2, Topo

SeasoNet [37] 63 353 10 m 33 semi-automatic (CLC [36]) 10 m 748k Sentinel-2

FLAIR-HUB (Ours) 63 203 20 cm 19/23 visual interpretation 20 cm
1.6 / 10 m 2 528 aerial, Topo, SPOT6-7

Sentinel-1&-2

provide large-extent coverage but with low-resolution annota-
tions (such as BigEarthNet [35], SeasoNet [37] or SEN12MS
[44]), some of them are even the output of fully automatic pro-
cess [44, 45]. In contrast, FLAIR [12] and FLAIR-HUB offer
very high-resolution annotations (20 cm) and covers a large
portion of the French territory. FLAIR-HUB is equivalent to
SEN12MS [44] in number of pixels but it provides high-
quality very high resolution annotation compared to automatic
annotation at 10m ground sampling distance.

FLAIR-HUB comprises over 63 billion manually annotated
pixels, which is more than 3 times more than FLAIR [12] or
CatLC [7], the closest counterparts to our dataset.

The spatial resolution of the annotation is crucial in land-
cover analysis. Insufficient resolution prevents the precise
measurements of surfaces and boundaries. Furthermore, small-
scale features, such as individual houses, lone trees or roads,
may not be captured accurately, limiting the potential applica-
tions of the derived segmentation. This new dataset tends to
answer some of the current challenges about operational very
high resolution land cover [46] that are spatial and semantic
accuracies, upscaling and data fusion.

C. Crop Type datasets
Monitoring agricultural land cover using Earth Observation

involves several key tasks and targets, including parcel delin-
eation, crop type classification or segmentation.

Parcel delineation is similar to an image segmentation
task, typically involving two or three classes (e.g., boundary,
interior, exterior). This task is especially critical in coun-
tries lacking a Land Parcel Information System (LPIS) [49].
Datasets for parcel delineation rely on two main sources of

labels: existing open-data parcel databases such as LPIS [61],
and manually annotated parcel boundaries [60]. Most parcel
delineation datasets are based on Sentinel-2 imagery at 10 m
spatial resolution. Some also incorporate PlanetScope data at
3 m spatial resolution, while AI4Boundaries [61] additionally
includes aerial imagery at 1 m spatial resolution, though this
higher-resolution data is not available for all years. Since par-
cel delineation is particularly valuable in areas where labelled
data is sparse, recent datasets aim to combine both manual
and declarative sources to leverage their respective advantages.
However, due to the limited availability of manually labelled
data compared to LPIS, careful sampling is required to ensure
geographic balance in the dataset [62].

Crop type classification is typically framed as a time series
classification task and was one of the earliest approaches to
crop mapping. The input time series can be constructed either
at the pixel level or at the object level (i.e., parcels), when
parcel boundaries are available. The development of crop type
classification datasets has been significantly accelerated by the
open availability of Satellite Image Time Series (SITS), such
as Sentinel-1 and Sentinel-2, as well as parcel vector data like
the LPIS in the European Union [55, 56, 59]. The large sample
sizes enabled by these data sources have made it possible
to apply deep learning architectures effectively to the crop
type classification task. Since time series classification does
not require dense pixel-wise annotations, labels can also be
derived from statistical surveys, such as the LUCAS Survey
in the EU [72].

Crop type segmentation extends pixel-level time series clas-
sification by incorporating spatio-temporal elements into the
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model. Although Sentinel-2 imagery has a spatial resolution
of 10 m, frequent acquisitions and rich spectral bands produce
datasets that are often one to two orders of magnitude larger
than those used for standard time series classification. The
availability of extensive label data and satellite imagery has
enabled the creation of very large datasets. For instance,
the dataset in [52] exceeds 10 TB in size, as it includes all
available data with minimal curation [55, 56]. However, as
suggested by Roscher et al. [73], using a curated subset of the
data can improve usability, achieve better class balance, and
maintain comparable classification performance.

Across all dataset types shown in Table II, a key challenge
in their creation lies in homogenizing existing parcel and
crop-type databases. Crop classification schemes are often
country- or region-specific, making direct integration into a
unified dataset difficult. To address this, classifications must be
standardized before datasets from different sources can be used

together effectively. For smaller datasets, this harmonization
is typically done manually by researchers. The resulting crop
taxonomy is often a simplified version—either a subset of
the original crop types or a grouping based on agronomic
similarities. This issue has prompted specific efforts focused
on data harmonization. For example, the FIBOA project (Field
Boundaries for Agriculture) provides standardized parcel de-
lineation and is used by the Fields of the World dataset
[62]. Similarly, the EuroCrops project [74] has harmonized
LPIS data across the European Union and has served as a
source of standardized crop labels in recent datasets [57, 59].
EuroCrops introduced the HCAT nomenclature, developed in
connection with the EAGLE matrix [75] by the European
Environment Agency. Other datasets, such as [52] and [54],
use crop classifications derived from the Indicative Crop
Classification (ICC) developed by the FAO [76]. In addition to
LPIS, some transnational harmonized sources like the LUCAS

TABLE II: Agricultural Land Datasets. Publicly available datasets for monitoring agricultural land. Multi-year — Multi-temporal : A multi-year dataset
includes data from different years over different areas, whereas a multi-temporal dataset provides data from multiple years or times for each area. TS — SITS
: SITS (Satellite Image Time Series) indicates instance or segmentation datasets that include one image per timestamp in the time series. TS (Time Series)
refers to classification datasets using tabular time-series data, where each time series represents values of spectral indices (e.g., NDVI) aggregated at the object
(e.g., parcel) level.

Type / Dataset
Data RoI Annotation

Size
Source Patch Size #Samples Extend Areas temporality Parcels Classes Source

SITS / Crop type

MunichCrops [47] Sentinel-2 48×48 - 4 284 km2

Munich 1 multi-year
2016-2017 137 k 17 LPIS 42 Go

Crop Type
Mapping Ghana [48]

Sentinel-1
Sentinel-2
Planets

32×32 - -
Ghana - 2016 8 937 4-24 Survey 310 Go

CV4A Kenya [49] Sentinel-2 2016×3035 4 ∼2 450 km2

Western Kenya 4 2019 >3 000 7 Survey 3.5 Go

ZueriCrops [50] Sentinel-2 24×24 28 k 2400 km2

Zurich - Swiss 1 2019 116 k 5-14-48 LPIS
FOAG -

Pastis-R [51] Sentinel-1
Sentinel-2 128×128 2433 ∼4 000 km2

France 4 2019 124 k 18 LPIS
FR 54 Go

Sen4AgriNet [52] Sentinel-2 366×366 225 k All France
Catalonia 1 multi-year

2016-2020 42 M 9-158 LPIS
FR-Ca 10 To

DENETHOR [53]
Sentinel-1
Sentinel-2
Planets

- - 1 152 km2

Germany 2 multi-temporal
2018-2019 4 500 9 LPIS 254 Go

AgriSen-COG [54]
TS-SITS* Sentinel-2 366×366 41 000 -

5 Country 5 multi-temporal
2019-2020 ∼7 M 11-* LPIS 28 Go

(Label)

TS / Crop type

BreizhCrops [55] Sentinel-2
L2A - L1C - 610k 27200 km2

Britanny France 1 2017 610 k 9 LPIS
FR

3.2 Go
8.5 Go

TimeSen2Crop [56] Sentinel-2 - 1 100 k 84k km2

Austria 1 multi-temporal
2018-2019 1 100 k 16 LPIS 1.2 Go

CropDeepTrans [57]
(early crop)

Sentinel-2
Crop Rot - ∼7.6 M 270k km2

FR-NL 2 multi-temporal
2016-2020 7.65 M 24—32 LPIS

FR-NL -

Sen4Map [58] Sentinel-2 64×64 335 k Europe 335 k 2018 20 LC
∼35 Crops Stat Survey LUCA 1.2 To

EuroCropsML[59]
(few shot) Sentinel-2 - 707 k 3 EU Countries

EE-LV-PT 2 2021 707 k 176 LPIS
EuroCrops 4.7 Go

Parcel delineation

AI4SmallFarms [60] Sentinel-2 1 000×1 000 62 Vietnam
Cambodia 62 t 439 k - image

labelling 1.4 Go

AI4Boundaries [61] Aerial Ortho(1 m)
Sentinel-2

512×512
256×256 7 831 Europe

7 countries 7 831 2019
S2-composite 14.8 M - LPIS 38 Go

Fields of the World [62] Sentinel-2
multi-date 256×256 70.5 k

166 k km2

4 Continents
24 countries

∼80 multi-Year
S2 - 1 date 1.63 M - FIBOA

EuroCrops -
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statistical survey [72] have been employed, notably in the
Sen4Map dataset [58]. An alternative to manual or rule-based
harmonization is the development of foundation models with
few-shot learning capabilities, which could adapt to different
national classification systems without requiring extensive
retraining [59].

Another critical challenge stems from the temporal variabil-
ity of crop types, which introduces significant transfer learning
issues. A model trained on a specific year and region may
perform well within its domain but generalize poorly across
different years—even within the same area. This limitation
has motivated the creation of adapted crop type segmentation
datasets. Two strategies have emerged to address this issue.
Multiyear datasets contain data from only one year per Region
of Interest (ROI), but the year varies across ROIs [52]. In con-
trast, multi-temporal datasets include data from multiple years
for each ROI, supporting more robust temporal generalization
[54, 57]. Finally, a particularly relevant variant of the temporal
generalization problem is early crop classification, where the
objective is to identify crop types as early as possible in the
growing season, rather than retrospectively at the end of the
year. In this context, historical crop type information, i.e., the
crop grown on the parcel in the previous season—can provide
valuable prior knowledge, as crop rotations are rarely random
and often follow agronomic patterns.

D. Multimodal remote sensing imagery datasets

Multimodal datasets are valuable resources for developing
models that effectively integrate diverse remote sensing modal-
ities, each contributing complementary information. Designing
architectures that can fully exploit the specific strengths of

different sensors remains an open research challenge [63, 77,
78, 79].

Beyond model design, multimodal datasets play a crucial
role in self-supervised pretraining of deep learning models
[16, 80, 81, 82, 83], as well as in thematic applications
such as forest monitoring [65] and super-resolution [68].
An increasing number of datasets have become available
for pretraining purposes, typically without annotations and
featuring uniform global coverage. These are often based on
observations from single-sensor satellite constellations like
Landsat and Sentinel [18, 69]. However, truly multimodal
datasets—involving multiple sensors—are still relatively rare
[84, 85, 86, 87, 88, 89, 90], and only a few of them include
ground-truth annotations [91, 92].

Some multimodal datasets provide data from different sen-
sors over non-overlapping regions, resulting in no spatial align-
ment across modalities [91], while others rely on automatically
generated labels [85]. Despite these limitations, multimodal
datasets can also be leveraged in cross-modal supervision
setups, where one modality is used to predict another. For
example, Sentinel-2 and PALSAR-2 data can be used to
estimate biomass, supervised by GEDI measurements [93], or
to perform cloud removal tasks [94].

As argued by Roscher et al. [73], Earth observation mod-
els benefit more from high-quality, diverse, and well-curated
datasets than from massive but uniform data acquisitions. The
design of FLAIR-HUB is aligned with these findings, offering
a dataset that combines extensive modal diversity and large-
scale coverage with curated, high-quality annotations.

Table III presents a comparison of multimodal datasets
that include at least three spatially aligned modalities and

TABLE III: Multi modal Datasets. Publicly available datasets featuring aligned multi-modal data for Earth observation, with annotations and more than three
modalities. Pixel counts are based on the highest-resolution modality. SITS (Satellite Image Time Series). S12: Sentinel-12. Topo: topographic information
such as DSM, DEM, or slope. HS: hyperspectral imagery. VHR: aerial very high-resolution imagery. Historical: legacy VHR imagery. LU: land use. LC:
land cover. ‡ : The FLAIR dataset is included in the new FLAIR-HUB dataset.

Dataset
Number of
Modalities

Modality
Task

Pixels
×109VHR S1 SITS S2 SITS SPOT Landsat t.s. Topo ALOS MODIS SITS HS LIDAR Historical

DFC 2018 [63] 3 ✓ ✓ ✓
LULC
Segmentation 2.0

TSAI-TS [15, 64] 3 ✓ ✓ ✓
Tree Species
Classification 4.7

FLAIR‡ [12] 3 ✓ ✓ ✓
LC
Segmentation 20

TalloS [65] 3 ✓ ✓ ✓
Tree Species
Classification 0.16

PASTIS-HD [15, 51] 3 ✓ ✓ ✓
Crop Type
Segmentation 7.5

Neon Trees [66] 3 ✓ ✓ ✓
Tree
Detection 363

CatLC [7] 4 ✓ ✓ ✓ ✓
LC
Segmentation 25.6

S2NAIP [67, 68] 4 ✓ ✓ ✓ ✓
”World Cover”
Segmentation 136

SatlasPretrain [69] 4 ✓ ✓ ✓ ✓
”World Cover”
Segmentation 3 087

MADS [70] 5 ✓ ✓ ✓ ✓✓
LC
Segmentation 1.9

Planted [71] 5 ✓ ✓ ✓ ✓ ✓
Tree
Classification 3.0

FLAIR-HUB (Ours) 6 ✓ ✓ ✓ ✓ ✓ ✓
LC & Crop Type
Segmentation 63
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are accompanied by some form of ground truth annotation.
Our dataset includes the highest number of aligned modali-
ties, along with a large number of annotated pixels. This is
especially notable given that several other datasets rely on
automatic or uncurated label sources [67, 69]. Some datasets,
such as FLAIR [12], PASTIS-HD [15], or Neon Trees [66],
include only three modalities. Others, such as MADS [70] and
Planted [71], do offer five aligned modalities but include fewer
annotated pixels than FLAIR-HUB.

To our knowledge, FLAIR-HUB is the only dataset that
combines historical aerial very high-resolution (VHR) im-
agery, SAR, and multispectral time series in a fully aligned
setup. Though it does not include LiDAR and hyperspectral
data, these modalities remain far less available in open-access,
large-scale, well-annotated formats.

III. Dataset global description and naming conventions

The first level of the FLAIR-HUB dataset folder structure
is defined by the modalities per domain information.
This organization was chosen to facilitate the later
addition of new domains, modalities or supervisions.
More specifically the fist level folder name is as follows :
DOMAIN SENSOR DATATYPE.

• DOMAIN: The FLAIR-HUB dataset is composed of
74 spatio-temporal domains. We define a spatio-temporal
domain as the conjunction of a geographical-extent and
an acquisition date. The geographical extent corresponds
to the French departments (≈ 100 departments), which are
both an administrative subdivision of the territory and the
management unit for very high spatial resolution aerial
images acquisitions. When aerial surveys and the resulting
orthoimages are managed together for two neighbouring
departments, we assemble the two department identifiers
in the domain’s name (e.g., D059062-2021, corresponds to
departments 59 and 62).

• SENSOR DATATYPE: At the first level of the directory
structure, the modality information is organized into two
types: (i) image sources (7 folders) and (ii) supervisions (3
folders). Each domain therefore has on release 10 folders.
For the image sources the SENSOR part relates either to the
name of the sensors that acquired the images (SENTINEL1-
ASC, SENTINEL1-DESC, SENTINEL2, SPOT) or products
derived from aerial surveys (AERIAL-RLT, AERIAL, DEM).
The DATATYPE gives a hint about the data format (TS:
Times Series; PAN: Panchromatic; RGBI: Red, Green, Blue,
Infrared channels; ELEV: Elevation). For supervisions, the
value of the SENSOR field is specified to differentiate be-
tween supervisions that have a strong link with a specific
sensor (for example where annotation was performed on the
sensor’s images) and those that can possibly be applied to all
sensor images (in which case, the value ALL is used). The
DATATYPE is used to exhibit the name of the supervision. In
this name we distinguish between LABEL if it corresponds to

an external annotation (LABEL-COSIA, LABEL-LPIS) and
MSK (masks) if it is a layer of information derived from a
sensor data such as the SENTINEL2 snow and cloud mask
(SENTINEL2 MSK-SC). A directory containing the metadata
of all patches from all domains GLOBAL ALL MTD is also
available. The format of each metadata file is a GeoPackage,
easily readable with GeoPandas Python package containing
both the geometric and attribute information of the patches.
Metadata about acquisition dates, geometry or radiometry
statistics are provided in the GLOBAL ALL MTD folder.

The second level of the directory structure represents the
Regions Of Interest (ROI). A ROI is a set of contiguous
patches. In FLAIR-HUB, all the patches are spatially aligned,
meaning that regardless the modality and its spatial reso-
lution, they represent the same coverage on the ground :
102.4 m×102.4 m. This choice has been made to have patches
of 512×512 pixels at 0.2 m spatial resolution. The concept of
ROIs was introduced to facilitate the annotation process by
pooling the labelling cost. FLAIR-HUB dataset is composed
of 2 822 ROIs. While patches have fixed sizes on the ground,
ROIs have variable sizes. To ensure a perfect nesting of the
patches in the ROIs, their width and length are multiples
of 512 m. On average, a ROI covers 0.90 km2. Table IV
provides information on the distribution of ROI sizes. The ROI
names (name of the second level folder) is not unique. The
ROI identifier corresponds to internal management information
that is not important for the dataset, except for the first two
characters, which describe the primary and secondary land use
(A=Agricultural, F=Forest, N=Natural, U=Urban).

TABLE IV: Region of Interest (ROI) Size Distribution. The area are 512×
512m multiples.

ROI Size
(512 × 512 m) × 1 2 3 4 5 6 8 9 10 12 15 16

Occurence 499 496 260 1 279 6 180 25 18 10 19 23 7

The patches are finally available in each ROI folder at third
level. Their file naming system was designed to be unique
and to contain the maximum amount of information about
their type. The file naming convention is structured as follows
: DOMAIN SENSOR DATATYPE ROI POSITION. The
POSITION information give the relative position of the patch
in the ROI (row-column). This name is referred as the patch id
in the metadata files. The GLOBAL ALL MTD GEOM
metadata file provides : the spatial footprint of each patch
(patch xmin, patch ymin, patch xmax, patch ymax) in the
reference cartographic system of France RF93-Lambert93
(EPSG:2154), the identifier and spatial extent of the ROI
to which the patch belongs (ROI id, ROI xmin, ROI ymin,
ROI xmax, ROI ymax), the position of the patch in the
ROI (patch row, patch col and the size of the ROI in
terms of number of patches (ROI nbpatch, ROI nbpatchx,
ROI nbpatchy). The GLOBAL ALL MTD MODALITIES is a
useful metadata for the patches. It provides, for each patch,
the relative path to the patch file of each modality.
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IV. Dataset modalities

A. Mono-temporal and multi-temporal modalities

In the following, we will detail the characteristics of each
source image and supervision. We will focus on describing the
spatial, spectral, temporal, and radiometric dimensions of the
patches, as well as their origin. The metadata associated with
each modality are explained. Table V provides a summary
of these characteristics. The FLAIR #1 datapaper [10], had
already described some of these modalities (AERIAL RGBI,
DEM ELEV, AERIAL LABEL-COSIA). Some of the
following paragraphs is taken from this paper.

• AERIAL RGBI: The AERIAL RGBI modality was
produced using the ORTHO HR® product; a mosaic of
all individual images taken during an aerial survey and
mapped onto a cartographic coordinate reference system.
Different cameras are used for the aerial image acquisitions.
This implies different sensors and consequently, different
image characteristics. The final ORTHO HR® product has
a spatial resolution of 0.20 m (R, G, B and NIR channels).
By design, there are no clouds (and therefore no missing
data) in the aerial images. Additionally, some radiometric
processing methods are applied to obtain the final product.
First, radiometric equalization methods are applied to the
individual images. Then, a global radiometric correction is
carried out on the merged images covering an entire spatial
domain to provide a more satisfying colour balance between
channels. We consider this radiometric equalization to be
relative: within a domain, the radiometric properties are
shared (even if the acquisition dates may differ), but there
are shifts in radiometry observable between domains (due
to both the date of acquisition and the specific radiometric
corrections applied). Therefore, the radiometry of R, G, B
and NIR images of the ORTHO HR® product cannot be
considered as a physical measurement of channel reflectance.
This radiometric information is encoded as an unsigned 8-bit
integer. Each AERIAL RGBI patch is structured with a

shape of C×H×W where C = 4 channels ans HxW = 512×512
pixels. To take this modality into account more precisely
one can use the AERIAL MTD RADIO-STATS and the
AERIAL MTD DATES metadata. AERIAL MTD RADIO-
STATS provides the mean and standard deviation per
patch for the Red, Green, Blue, and Infrared channels.
AERIAL MTD DATES gives for each patch the date and
time of acquisition, the name of the original individual image
and the name of the camera used. The temporal distribution
of the aerial images can be seen in Figure 1.

• AERIAL-RLT PAN: Such as the AERIAL RGBI
modality, the AERIAL-RLT PAN is an orthoimage produced
with individual aerial surveys images. The image mosaic
is stated to be from the 1950’s, but in reality, the images
intersecting the FLAIR-HUB patches date from 1947 to 1965
(see Figure 1). To keep things simple, we included the date
195X in the domain name of these modalities. 4 domains
in the dataset correspond to the same department but with
different acquisition dates. These double domains share the
same associated AERIAL-RLT PAN domain. As a result,
AERIAL-RLT PAN is the only modality with 70 domains
instead of 74. During these years, aerial photography was
not conducted at the department level but rather on a much
more local scale, without any specified spatial resolution.
Consequently, even though the data has been resampled to a
pixel size of 0.4 m in this dataset, the actual spatial resolution
can varies significantly from one area to another. Thanks
to other unpublished metadata, we estimate that the actual
spatial resolution can vary by a factor of 3, ranging from
0.4 m to 1.2 m. The AERIAL-RLT MTD DATES metadata
provides the acquisition date of each patch and the name of
the original historical aerial image. All of the images have
been acquired in the Panchromatic interval, being sensitive
from blue to red wavelengths. Then, intra-domain radiometric
equalization is very challenging due to the nature of old film-
based images (vignetting). Locally, there can be significant
radiometric differences within a single domain. Additionally,
statistical equalization techniques are applied, which result in

TABLE V: Overview of the different data modalities available across the dataset. We provide the details about spatial, temporal, spectral, and
radiometric resolution for each modality.

Modality Spatial resolution Temporal
resolution

Spectral Resolution Radiometric
resolution

Volume

Patch size Pixel size type channel per date Calibration

AERIAL-RLT PAN 256×256 0.4 m Mono-temporal Panchromatic 1 Relative Domain equalization (DN) UInt8 11.15 Go

AERIAL RGBI 512×512 0.2 m Mono-temporal Multi-spectral 4 Relative Domain equalization (DN) UInt8 232.76 Go

DEM ELEV 512×512 0.2 m Mono-temporal Multi-channel 2 Absolute Altitude (m) Float32 365.18 Go

SENTINEL1-ASC TS 10×10 10.24 m Time Series Multi-channel 2 Absolute σ0 Backscatter (no unit) Float32 16.68 Go

SENTINEL1-DESC TS 10×10 10.24 m Time Series Multi-channel 2 Absolute σ0 Backscatter (no unit) Float32 17.96 Go

SENTINEL2 TS 10×10 10.24 m Time Series Multi-spectral 10 Absolute BOA Reflectance (%) UInt16 41.61 Go

SPOT RGBI 64×64 1.60 m Mono-temporal Multi-spectral 4 Absolute BOA Reflectance (%) UInt16 6.24 Go

AERIAL LABEL-COSIA 512×512 0.2 m Mono-temporal Mono-channel 1 Absolute Label UInt8 2.20 Go

ALL LABEL-LPIS 512×512 0.2 m Mono-temporal Multi-channel 3 Absolute Label UInt8 6.35 Go

SENTINEL2 MSK-SC 10×10 10.24 m Time Series Multi-channel 2 Absolute Probability (%) UInt16 8.39 Go
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Fig. 1: Temporal Distribution of Mono-temporal Modality Acquisitions. From top left to bottom right, we provide the information about the month of
acquisition for the Aerial VHR images, historical images, SPOT satellite images, and finally, the year of acquisition for the historical data. For each domain,
the size of the circle is proportional to the amount of data for that month or year.

a significant reduction in global contrast. Therefore, handling
the radiometry of this modality is particularly challenging.
As with the AERIAL RGBI modality, we consider the
calibration to be relative and not corresponding to a physical
measurement. The value is encoded as an 8-bit unsigned
integer. The AERIAL-RLT MTD RADIO-STATS metadata
provides mean and standard deviation information of the
panchromatic channel of each patch. Each patch is structured
with a shape of H×W = 256×256 pixels.

• DEM ELEV: This modality has two channels : the Digital
Surface Model (DSM) and the Digital Terrain Model (DTM).

The DSM gives the altitude, in meters (absolute calibration),
for each pixel. Thanks to dense matching techniques, the
DSM is derived from the same aerial survey that is used
to produce the AERIAL RGBI modality. This gives the
DSM the same spatial resolution as the AERIAL RGBI but
more importantly prevents temporal shifts and ground cover
changes between the two products making them temporally
coherent. However, there still are small geometric differences
between the two products, because orthoimages are projected
on the DTM. Moreover, dense matching techniques are
applied automatically, potentially introducing noise and
artifacts. In particular, radiometrically homogeneous areas
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(e.g., parts of the aerial image with little texture) tend to
lead to locally false and varying 3D information. Apart from
these artifacts, the vertical accuracy of the DSM can be
considered to be twice the spatial resolution (0.4 m). The
DTM information comes from the RGE ALTI Digital Terrain
Model. This product is a national DTM available at a spatial
resolution of 1 m. It is constructed from different sources
such as dense matching of aerial images, airborne Lidar or,
for mountainous areas, from airborne Synthetic Aperture
Radar acquisitions. Depending on the source, the vertical
accuracy of the RGE ALTI DTM can vary between 0.3 m and
7 m. DTM provides altitude from ground surface, removing
buildings, trees, and other objects. The difference between
the DSM and the DTM information is then related to the
height of buildings or trees. Each patch is therefore sized
C×H×W = 2×512×512. Each channel represents an altitude
and is therefore encoded as a single-precision floating-point
(Float32).

• SPOT RGBI: This modality has been produced using
images from satellite SPOT 6-7 that are acquired each
year to produce the French SPOT annual mosaic. For each
FLAIR-HUB patch, we chose to use images from the annual
SPOT 6-7 mosaic of the same year as the AERIAL RGBI
images, ensuring temporal proximity between the two
modalities (see Figure 1 for the temporal distribution of
both modality). However, there can be a gap of several
months between the two observations, leading to differences
in object appearances in the images (e.g., agriculture, forest)
or actual land cover changes. The acquisition date, time, and
the name of the original SPOT 6-7 image are provided in
the SPOT MTD DATES metadata table. Initially the images
are distributed at 1.50 m resolution but were resampled
in the FLAIR-HUB dataset to 1.60 m to be a multiple of
0.2 m. The images include four spectral channels: Red,
Green, Blue, and Infrared. Such as Sentinel-2 images the
radiometric information is calibrated to Level-2A bottom-
of-the-atmosphere reflectance (absolute calibration, no unit).
Mean and standard deviation of the 4 channels are given in the
SPOT MTD RADIO-STATS metadata file. The reflectance
percentage is encoded as a UInt 16 : 0 = 0% reflectance and
to 10 000 = 100% reflectance. The shape of each patch is
then C×H×W = 4×64×64.

• SENTINEL-2 TS & MSK-SC: Yearly acquisitions from
the Copernicus Sentinel-2A and Sentinel-2B satellites are
provided for each area. The time-series ( TS) data correspond
to Level-2A bottom-of-the-atmosphere reflectance. The
dataset includes 10 spectral channels (B02, B03, B04, B05,
B06, B07, B08, B8A, B11, B12), excluding the atmospheric
bands with a 60 m spatial resolution. To ensure consistency
with other modalities and fit the spatial extent of patches
to a multiple of 0.2 m, the spatial resolution of Sentinel-2
images was resampled to 10.24 m. While the nominal revisit
time at the equator is 5 days, the actual length of the
time series varies significantly across different areas due to

orbits, ground segment data gaps, or acquisition failures.
Consequently, the number of acquisitions in the dataset ranges
from 20 to 146 as it can be seen on Figure 2. Level-2A
data include geophysical masks for snow and cloud cover
( MSK-SC), which are associated with the time-series data
to filter out unfavourable acquisition conditions. To reduce
the number of files, each dataset patch is structured with a
shape of (T×C)×H×W, where T represents the acquisition
dates stacked in the first dimension. C = 10 for TS data
and C = 2 for MSK-SC. The SENTINEL2 MTD DATES
metadata is available for analysing time series. For each
patch, it provides a dictionary containing the length of the
time series and the acquisition date corresponding to each
position in the series. This metadata is complemented by
SENTINEL2 MTD RADIO-STATS, which describes, in
dictionary form, the means and standard deviations of the
10 bands per date. Pixels with a probability of being cloudy
strictly greater than 0 are excluded from the mean and
standard deviation calculation. When the number of samples
for statistical computation is zero, the value nan is returned.
On the contrary to FLAIR dataset [11, 12], we only consider
aligned pixels and do not provide context information from
Sentinel-2 time series. That means a reduction of about 93%
of pixels from Sentinel-2 per VHR patches.

• SENTINEL-1ASC & -1DESC TS: Yearly time series from
the C-Band Copernicus Sentinel-1A and Sentinel-1B satellites
are provided. Ground Range Detected (GRD) products are
used in dual-polarization mode (VV and VH). Both ascending
(ASC TS) and descending orbits (DESC TS) are included
separately, as their incidence angles differ significantly.
The Sigma nought (σ0) backscattering coefficient, which
represents the normalized radar backscatter intensity of
the surface, is calculated for both polarization channels. It
provides essential information on surface properties such
as roughness, moisture content, and land cover type. No
speckle filtering was applied and data averaging results from
the GRD product’s equivalent number of looks, which is
approximately 4. Similar to Sentinel-2 time-series data, each
Sentinel-1 patch is structured with a shape of (T×C)×H×W,
where T represents the acquisition dates stacked in the first
dimension, and C = 2 corresponding to the two polarization
channels (VV and VH). Figure 2 illustrates the number
of acquisition available for these modalities. To align with
the spatial extent requirements and ensure consistency
across modalities, the spatial resolution of Sentinel-1
images was resampled to 10.24 m. Just like the metadata
describing the Sentinel-2 series, the files SENTINEL1-
ASC MTD DATES, SENTINEL1-DESC MTD DATES,
SENTINEL1-ASC MTD RADIO-STATS, and SENTINEL1-
DESC MTD RADIO-STATS describe the lengths, dates, and
statistics of the Sentinel-1 series.

• AERIAL LABEL-COSIA: The AERIAL LABEL-COSIA
supervision consists in determining the land cover at the pixel-
level. It is based on photo-interpretation of the AERIAL RGBI
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Fig. 2: Spatio-temporal distribution of multi-temporal modality acquisitions. We plot the number of acquisitions per area for the different STIS; areas
are buffered by 5 km for visualization purposes. The acquisition orbits can be distinguished.

images and has been manually produced by experts. An
initial spatial multi-level image segmentation approach [95]
was applied, simplifying the labelling at the cluster level.
We note that this segmentation was not necessarily final, but
was modified interactively when deemed appropriate. It was
specified that movable objects (e.g., cars, boats) are not to
be annotated as such, but to be classified as the underlying
cover. For example, a car on an asphalt road is labelled as an
impervious surface [10]. We explicitly named this supervision
AERIAL LABEL-COSIA because it is both temporally and
geometrically fully consistent with the AERIAL RGBI im-
ages. The AERIAL LABEL-COSIA patches are then shaped
as C×H×W = 512×512.

The land cover classification consists of 19 classes, ranging
from 0 to 18. Table VI provides the list of classes and
their respective label number and their frequency in terms
of pixel count and percentage (for total, train, valid and
test partitions). Please note that the class order has changed
compared to previous versions of the dataset ([10, 11]) to
ensure that labels start at 0, classes are thematically organized,
and classes corresponding to weak labels appear at the end
of the nomenclature. Only the first 15 classes are used in
the FLAIR-HUB experiments. Classes 0 to 4 correspond to
different types of anthropized areas. These are the categories
of interest to be used, for example, to monitor soil land take.
Classes 5 to 8 represent natural surfaces without agricultural
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TABLE VI: Semantic classes and their frequency in the LABEL-COSIA nomenclature of the FLAIR-HUB dataset.

Class LABEL-COSIA Baseline Pixels % total % train % valid % test
Building 0 ✔ 3 483 982 647 5.51 5.33 5.42 6.13
Greenhouse 1 ✔ 134 298 230 0.21 0.23 0.15 0.20
Swimming pool 2 ✔ 17 885 590 0.03 0.03 0.02 0.04
Impervious surface 3 ✔ 5 796 512 286 9.17 8.84 8.81 10.44
Pervious surface 4 ✔ 3 530 039 654 5.59 5.60 6.04 5.21
Bare soil 5 ✔ 2 539 309 904 4.02 4.21 3.96 3.49
Water 6 ✔ 3 308 863 698 5.24 5.27 5.60 4.86
Snow 7 ✔ 443 134 338 0.70 0.72 0.40 0.88
Herbaceous vegetation 8 ✔ 10 998 905 498 17.40 16.79 16.42 19.99
Agricultural land 9 ✔ 8 665 649 328 13.71 14.17 14.69 11.59
Plowed land 10 ✔ 1 733 051 984 2.74 3.04 3.03 1.63
Vineyard 11 ✔ 1 647 328 848 2.61 2.67 2.69 2.35
Deciduous 12 ✔ 12 731 200 586 20.14 20.23 19.95 20.04
Coniferous 13 ✔ 4 227 196 348 6.69 6.46 6.35 7.62
Brushwood 14 ✔ 3 451 432 094 5.46 5.63 5.66 4.80
Clear cut 15 ✗ 378 090 812 0.60 0.61 0.70 0.49
Ligneous 16 ✗ 2 809 408 0.00 0.00 0.00 0.00
Mixed 17 ✗ 36 603 366 0.06 0.05 0.01 0.12
Undefined 18 ✗ 74 348 348 0.12 0.12 0.09 0.13

intensive usage. Classes 9 to 11 relate to agricultural areas,
while classes 12 to 17 correspond to forested areas. Class
16 (ligneous) and 17 (mixed) can be considered as weak
labels. Due to the polygon-based annotation process , the
photo-interpreter may sometimes be unable to distinguish
between the deciduous and coniferous classes. In such cases,
they use the ligneous label. Similarly, if both deciduous and
coniferous are present within the same polygon, the mixed
code is used. The geometric segmentation was fine enough
to ensure that this weak labels remain very rare (≈0.06%
of the annotated pixels). Finally, class 19 indicates cases
where the photo-interpreter could not provide an annotation
(e.g., shadows, uncertainty between certain classes). For
a more in-depth analysis of the AERIAL LABEL-COSIA
labels, the AERIAL MTD LABEL-COSIA metadata file is
available. This file provides, for each patch, the histogram of
AERIAL LABEL-COSIA labels (unit: pixels).

Even though annotations are made with photo-
interpretation, some errors are unavoidable, especially
for classes that are visually hard to distinguish, such as bare
soil and pervious surfaces. Around 37 k randomly chosen
polygons were manually annotated, remaining hidden from
the annotating teams. This accounted for an area of 18.7 km2

equivalent to approximately 468 million pixels. Annotation
batches not achieving 95% accuracy were rejected and
sent back for re-annotation. This iterative process fostered
productive exchanges between the annotators and independent
geography experts, ensuring a high-quality dataset.

• ALL LABEL-LPIS: The AERIAL LABEL-LPIS
modality provides information on agricultural surfaces,
structured into a semantic crop classification with three
hierarchical levels. This annotation is derived from the

French LPIS (Land Parcel Identification System), which
consists of declarative parcel data digitally submitted by
farmers. These declarations are made within the framework
of the European Common Agricultural Policy (CAP), which
provides subsidies and support based on land use. However,
farmers are not obligated to declare all their parcels but only
those relevant to their subsidy claims. As a result, not all
agricultural parcels present within a given ROI are included
in the AERIAL LABEL-LPIS modality, since only parcels
declared under the CAP are represented. For instance, it is
known that vineyard surfaces are frequently absent from the
labels due to non-declaration.

LPIS data is digitized by farmers using an online platform,
based on the most recent available aerial orthoimagery which
is identical to that used in the AERIAL RGBI modality.
To ensure temporal consistency, LPIS data for each Region
of Interest (ROI) was selected from the same year as the
corresponding AERIAL RGBI imagery. Consequently, the
AERIAL LABEL-LPIS modality offers temporally aligned
supervision across multiple years.

The original LPIS classification includes over 230 crop
types. To enhance consistency across years and simplify
downstream tasks, these classes were harmonized and
organized into a three-level hierarchical taxonomy. While
this taxonomy diverges from HCAT [74] at the second and
third levels, it remains broadly similar at the first level. The
second and third level classes were determined based on
crop availability within the ROIs. Crop types with limited
spatial extent (e.g., present in < 10 ROIs or domains) were
merged with similar crops based on phenological traits and
growing seasons. Certain LPIS classes—those dominated by
ligneous vegetation (e.g., pastured woodlands or oak/chestnut
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TABLE VII: Semantic classes and their frequency in the LABEL-LPIS multilevel nomenclature of the FLAIR-HUB dataset.

Class LV.1 LV.1 Baseline Pixels %total %train %valid %test Class LV.2 LV.2 Class LV.3 LV.3
Grasses monoculture 0

Grasses 0 ✔ 6 318 583 131 10.0 9.36 8.66 12.91 Grasses 0
Grasses mixture 1
Winter wheat 2

Wheat 1 ✔ 1 639 060 670 2.59 2.84 3.18 1.41 Wheat 1
Spring wheat 3
Winter barley 4

Barley 2 ✔ 658 266 930 1.04 1.09 0.94 0.96 Barley 2
Spring barley 5

Maize 3 ✔ 1 288 052 739 2.04 2.09 2.37 1.63 Maize 3 Maize 6
Sorghum 7

Sorghum/Millet 4
Millet / Foxtail millet 8
Winter durum wheat 9
Winter triticale 10
Winter oat 11

Other winter cereals 5

Winter rye 12
Spring oat 13

Other spring cereals 6
Other spring cereals 14

Other cereals 4 ✔ 383 132 669 0.61 0.62 0.63 0.55

Other cereals 7 Other cereals 15
Rice 5 ✔ 42 118 356 0.07 0.09 0.07 0.00 Rice 8 Rice 16

Hemp/Tobacco 9 Hemp/Tobacco 17
Fiber flax 18Hemp/Flax/Tobacco 6 ✔ 47 ,265 258 0.07 0.04 0.09 0.17

Flax 10
Other flax 19

Sunflower 7 ✔ 473 323 562 0.75 0.90 0.98 0.12 Sunflower 11 Sunflower 20
Rapeseed 8 ✔ 366 394 829 0.58 0.57 0.91 0.35 Rapeseed 12 Rapeseed 21

Mustard 22
Other oilseed crops 9 ✔ 7 823 820 0.01 0.02 0.00 0.00 Other oilseed crops 13

Other oilseed crops 23
Soy 10 ✔ 122 451 006 0.19 0.27 0.10 0.04 Soy 14 Soy 24

Spring peas 25
Winter protein crops 26Other protein crops 11 ✔ 147 499 283 0.23 0.25 0.39 0.06 Other protein crops 15
Other protein crops 27

Alfalfa 16 Alfalfa 28
Clover 29Fodder legumes 12 ✔ 385 503 065 0.61 0.67 0.60 0.45

Other fodder legumes 17
Other fodder legumes 30

Beetroots 13 ✔ 117 492 248 0.19 0.20 0.26 0.09 Beetroots 18 Beetroots 31
Potatoes 14 ✔ 67 363 659 0.11 0.12 0.13 0.06 Potatoes 19 Potatoes 32

Fruits and vegetables 20 Fruits and vegetables 33
Aromatic/Medicinal
plants 21 Aromatic/Medicinal

plants 34

Buckwheat 35
Other arable crops 15 ✔ 307 449 041 0.49 0.59 0.39 0.26

Other arable crops 22
Other arable crops 36

Vineyard 16 ✔ 1 141 947 919 1.81 1.92 1.65 1.57 Vineyard 23 Vineyard 37
Olive groves 17 ✔ 51 694 187 0.08 0.09 0.04 0.09 Olive groves 24 Olive groves 38
Fruit orchards 18 ✔ 504 280 801 0.80 0.87 1.00 0.42 Fruit orchards 25 Fruit orchards 39
Nut orchards 19 ✔ 80 408 145 0.13 0.16 0.03 0.11 Nut orchards 26 Nut orchards 40

Lavandin 27 Lavandin 41
Berries 42Other permanent crops 20 ✔ 97 546 687 0.15 0.03 0.50 0.27

Other permanent crops 28
Other permanent crops 43

Mixed crops 21 ✔ 230 723 268 0.37 0.37 0.39 0.32 Mixed crops 29 Mixed crops 44
Background 22 ✔ 48 724 537 127 77.09 76.84 76.68 78.15 Background 30 Background 45
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Fig. 3: Example patches from the dataset, illustrating all available modali-
ties. We only plot one image per satellite time series. ASC stands for ascendant
and DESC for descendant.

groves), aquatic areas (e.g., salt marshes or reed beds), or
artificial surfaces (e.g., greenhouses) were grouped under
the background class. In contrast, mixed-crop classes were
deliberately left unmerged with homogeneous crop classes.
These mixed classes are better interpreted as unknown and
are therefore excluded from training loss computation. The
final taxonomy contains 23, 31, and 46 classes at levels 1,
2, and 3 respectively. These have been rasterized as separate
channels within a single TIFF file, with a spatial resolution
of 20 cm—matching that of the AERIAL RGBI modality

Spatial discrepancies between AERIAL LABEL-LPIS and
AERIAL LABEL-COSIA are expected due to the declarative
nature of LPIS data integrating land use alongside land cover.
Since parcel boundaries in LPIS are manually digitized by
farmers and may not align precisely with the actual land
cover, pixel-level correspondence between the two labels
is not guaranteed. As a result, pixels within a single LPIS
parcel can belong to different AERIAL LABEL-COSIA
classes, particularly along the edges or in areas with internal
heterogeneity.

As previously mentioned, LPIS data are declarative in
nature, provided by farmers, and therefore lack an associated
recall threshold at the object (parcel) level. Nonetheless,
certain quality criteria must be met for declared parcels.
First, the overall error rate of the declared crop type should
be approximately 2%, and remain below 5%. Second, with
regard to the geometric accuracy of parcel boundaries, the
precision for parcel block boundaries separating a parcel from
the background is expected to be around 1 m. In contrast, the
precision for internal boundaries between adjacent parcels
may be lower, with discrepancies of up to 5 m. This reduced
accuracy stems from the fact that digitization is performed
prior to crop sowing, using ortho-images from previous years,
as current-year imagery is not yet available. While external
parcel block boundaries tend to be temporally stable and
can therefore be digitized more precisely, internal parcel
boundaries may vary annually and may not correspond to
visible features in historical imagery. Finally, as shown in
Table VII, the selected ROIs in the current dataset were
not chosen to ensure a minimum area for all crop types.
Consequently, this may affect the performance of models
trained using LPIS labels.

Figure 3 provides a visual comparison of the different data
modalities available in the dataset, shown over three patches
sampled from geographically distinct regions. This illustration
highlights the diversity of sensor inputs and annotations in
terms of spatial, temporal, and radiometric resolutions.

B. Official dataset partitions

Information regarding the usage of patches for training,
validation, or testing is provided in the metadata
file GLOBAL ALL MTD SPLIT. This file establishes
the correspondence between each patch id and its
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Fig. 4: Spatial distribution of splits in a k-fold configuration. Split 1 corresponds to the official FLAIR-HUB split (also named split flairhub).

associated data split. Seven predefined splits are available:
split flairhub, split 1, split 2, split 3, split 4, split 5, and
split flairchallenge.

• split 1, . . . , split 5: The general approach for creating
these splits was to expertly define five clusters of domains.
Each cluster is designed to represent all types of landscapes
and climates. A separation between train+validation and test is
then performed domain-wise. Split 1 used cluster 1 for testing
and clusters 2 to 5 for training and validation. Similarly,
for splits 2 to 5, the test partition was rotated accordingly.
Next, the separation between training and validation was
performed ROI-wise. This choice was made to ensure that
both the training and validation sets contain a sufficient
number of domains while maintaining spatial independence
between patches. Indeed, contiguous patches belonging to
the same ROI all share the same usage, either training
or validation. The train/validation split was performed to
obtain a 80% / 20% distribution between train and validation,
respectively. Splits 1 to 5 are therefore the splits we will use
when a model needs to be evaluated through cross-validation.
Figure 4 illustrates the five splits and the rotation of the test set.

• split flairhub: The split named split flairhub is the one
primarily used for the experiments presented in this paper.
It is identical to split 1 from the cross-validation setup.
For convenience, this split has been duplicated under a
separate name. In this split, the TRAIN set comprises
152 225 patches, the VALIDATION set contains 38 175
patches, and the TEST set includes 50 700 patches. Table VI
shows the relative proportions of AERIAL LABEL-COSIA
across the training, validation, and test sets, while Table VII
reports the corresponding distribution for ALL LABEL-LPIS.

• split flairchallenge: The entirety of the FLAIR #1 [10]
and FLAIR #2 [11, 12] datasets is included within the
FLAIR-HUB dataset. FLAIR #1 and FLAIR #2 datasets differ
only in their test partitions. The split flairchallenge metadata
enables the reproduction of experiments from both publica-
tions by indicating, for each FLAIR-HUB patch, whether it
was not used in either dataset (none), or whether it was used
for training (train), validation (valid), the FLAIR #1 test set

(test-1), or the FLAIR #2 test set (test-2). The FLAIR #1 and
FLAIR #2 test sets are included in the test set of the official
split : split flairhub.

V. Baseline architecture

The baseline architecture, namely UPerFuse, integrates
multiple feature extraction and a fusion strategy which are
shown in Figure 5. It is built upon four primary components:
a Swin Transformer feature extractor, a UTAE spatio-temporal
encoder, a fusion mechanism, and a UPerNet decoder for
segmentation.

Swin Transformer: the Swin Transformer [14] module
processes mono-temporal data and is designed for hierarchical
spatial feature extraction. The input imagery is first partitioned
into patches, which undergo linear embedding to transform
them into feature representations. These representations
are processed through multiple Swin Transformer stages,
interspersed with patch merging operations. The feature
representations from the patches are processed through a
series of Swin Transformer stages, each containing a specific
number of Swin Transformer blocks (i.e., 2, 2, 6 and 2).
Each stage alternates between layers of regular and shifted
window-based multi-head self-attention. These stages include
patch merging operations that reduce spatial resolution while
increasing the channel dimension. The Swin Transformer
blocks within these stages leverage layer normalization,
multi-layer perceptrons, and attention mechanisms to
capture long-range dependencies and hierarchical feature
representations. Skip connections are used to facilitate gradient
flow and preserve information across layers, providing a
comprehensive understanding of spatial structures.

UTAE: the UTAE (U-Net with Temporal Attention Encoder,
[96]) module processes multi-temporal data. It consists of a
series of Down-Convolution blocks that progressively reduce
the spatial resolution while enhancing feature representation.
A temporal attention mechanism is applied to capture
dependencies across different time steps in multi-temporal
imagery. The extracted features are then upsampled through
multiple Up-Convolution blocks to restore spatial resolution
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Fig. 5: Architecture of the baseline UPerFuse model designed for multimodal fusion and multi-task semantic segmentation. The transparent modules
correspond to auxiliary loss branches.

while preserving temporal context.

Fusion Mechanism: the outputs from the Swin Transformer
and UTAE modules are combined through a dedicated
FusionHandler module. This fusion mechanism performs
spatial alignment via interpolation, feature stacking, and
convolutional refinement.

UPerNet Decoder: the fused features are processed using the
UPerNet decoder [97], which consists of a Pyramid Pooling
Module (PPM) and multiple convolutional blocks. The
PPM aggregates multi-scale contextual information, which
is subsequently refined through a series of convolutional
blocks. Skip connections and hierarchical fusion ensure the
preservation of fine-grained spatial details.

Segmentation Head: Final segmentation predictions are
obtained through a series of convolutional layers applied to
either the UPerNet or UTAE output, depending on the input

modality. If only multi-temporal data is used, the UTAE logits
outputs are directly passed to the segmentation heads. The
workflow dynamically adapts based on the input modalities
(mono-temporal or multi-temporal). If any mono-temporal
modality is active, all feature maps are passed through the
FusionHandler, enabling per-stage alignment and merging of
feature maps. The merged feature maps are then processed
for each task (e.g., land cover or crop-type mapping) using a
common UPerNet decoder followed by a segmentation head.
When only multi-temporal modalities are utilized, the UTAE
logits outputs are directly employed for segmentation without
requiring additional fusion.

Auxiliary branches are integrated for each modality to
improve gradient flow. These branches process encoder feature
maps independently through separate decoders, bypassing the
fusion step, and directly feeding into segmentation heads. This
design ensures robust feature extraction while maintaining
flexibility in handling diverse remote sensing data inputs.
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Network supervision: The total loss function of the proposed
model is designed to handle multiple tasks, multiple modali-
ties, and auxiliary losses, with weighted contributions for each
component.
Main Loss: for each task t, let Lt be the primary loss computed
using a task-specific criterion. Given the ground truth labels
Yt and the predicted logits Zt, the main loss is defined as:

Lmain
t = Ltask(Zt, Yt) (1)

where Ltask represents the task-specific loss function (e.g.,
cross-entropy loss with class weighting).
Auxiliary Loss: Auxiliary losses are introduced to enhance
feature learning by deep supervision [98] and to prevent the
multimodal model from focusing on one specific input data.
Let M be the set of auxiliary modalities. For each task t, the
auxiliary loss is computed as:

Laux
t =

1

|M|
∑

m∈M
Laux(Z

m
t , Yt) (2)

where Zm
t represents the auxiliary logits derived from

modality m, and Laux follows the same loss formulation as
the main loss.
Total Loss Function: the final loss function balances the main
and auxiliary losses with task-specific weights wt and a global
auxiliary loss weight β:

Ltotal =
∑
t∈T

wt

(
Lmain
t + βLaux

t

)
(3)

where T denotes the set of all tasks, wt is the weight
associated with task t, and β is a global coefficient that
balances auxiliary losses against the main task losses.

VI. Benchmark framework and metric

Framework and settings: our implementation is based on
PyTorch Lightning [99], leveraging the segmentation-models-
pytorch (SMP) [100] library to access pretrained Timm
encoders [101]. Additionally, we incorporate the U-TAE
network from its official repository [96], using the default
architecture but with increased encoder and decoder widths.

The model is optimized using AdamW [102], which
decouples weight decay from the optimization step to
improve stability. We set the weight decay to 0.01 and use β
parameters of (0.9, 0.999), which control the moving averages
of gradient moments. Learning rate scheduling is managed
by OneCycleLR, which dynamically adjusts the learning rate
throughout training to improve convergence, incorporating an
initial warm-up phase of 20%. The training procedure spans
150 epochs with a batch size of 5 and an initial learning rate
of 0.00005. Experiments are conducted on a high-performance
computing (HPC) cluster using 4 to 6 nodes, each equipped
with 4 NVIDIA Tesla V100 (32GB memory), A100 or H100
(80GB memory) GPUs. The Distributed Data Parallel strategy
in PyTorch Lightning is used to ensure efficient distributed
training. Data augmentation techniques include cloud removal
and temporal averaging.

For the AERIAL RGBI and SPOT RGBI imagery, only
three channels were used in the experiments: Infrared,
Red, and Green. Although an initial setup included the
four channels, only these three were retained based on
performance evaluations. For both modalities and the
DEM ELEV channels, as well as AERIAL RLT-PAN, input
data were normalized using the statistics (mean and standard
deviation) reported in Table VIII, which were computed over
the combined TRAIN and VAL partitions of the split flairhub.

Metric: The performance of the semantic segmentation

TABLE VIII: Radiometric statistics of the mono-temporal modalities. Mean and standard deviation of the mono-temporal modalities across different
dataset partitions of the split flairhub.

TRAIN VAL TRAIN+VAL TEST ALL

mean std mean std mean std mean std mean std

AERIAL RGBI R 105.66 52.40 105.68 51.55 105.66 52.23 104.20 52.80 105.35 52.36

AERIAL RGBI G 111.36 45.81 111.30 44.87 111.35 45.62 111.16 45.65 111.31 45.63

AERIAL RGBI B 102.19 44.61 102.12 43.00 102.18 44.30 101.75 44.74 102.09 44.39

AERIAL RGBI I 106.83 39.71 105.64 40.06 106.59 39.78 104.36 40.82 106.12 40.01

DEM ELEV DSM 321.15 549.12 270.82 486.63 311.06 537.55 384.14 523.28 326.43 535.41

DEM ELEV DTM 317.16 549.41 266.78 486.82 307.06 537.82 380.10 523.90 322.42 535.75

SPOT RGBI R 433.63 314.09 431.79 307.38 433.26 312.76 427.38 366.04 432.03 324.70

SPOT RGBI G 509.12 286.21 507.29 278.16 508.75 284.61 502.06 352.90 507.34 300.28

SPOT RGBI B 468.3 228.49 465.67 215.86 467.77 226.02 462.90 283.88 466.75 239.36

SPOT RGBI I 1 134.58 530.77 1 146.81 589.68 1 137.03 543.11 1 085.83 502.72 1 126.26 535.28

AERIAL-RLT PAN PAN 125.84 38.68 126.24 37.5 125.92 38.45 125.95 39.57 125.92 38.69
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models is evaluated using the mean Intersection over Union
(mIoU) and Overall Accuracy (O.A.) metrics. For the land-
cover task, we exclude the ill-defined classes (see Table VI)
and thus evaluate the results over the remaining 15 classes. For
the LPIS crop-type task, two classes, rice and other oilseed
crops, are absent from the test set, so mIoU is computed over
the remaining classes.

VII. Benchmark results

A. CNN-based versus Transformer-based Model

In Table IX, we compare different architectures for the
encoder and decoder part using aerial imagery only (3 bands:
infrared, red, and green) as input. For this configuration,
we evaluate several seminal encoder backbones, including
convolutional neural networks (CNNs) such as ResNet [103],
ResNeXt [104], ConvNeXtV2 [105] and HRNet [106], as well
as transformer-based models such as the Swin Transformer
[14] and the Mix Transformer (MiT-BX) encoders [107].
To ensure a fair comparison, we selected versions of these
architectures with a similar number of parameters. For the
Swin Transformer, we evaluated different model sizes, from
”Tiny” to ”Large”, to explore the trade-off between model
complexity and performance. The Tiny variant is optimized
for lightweight and fast inference, while the Large variant
prioritizes accuracy at the cost of increased computational
load. On the decoder side, we compare four well-established
architectures: UNet [41], SegFormer [107], DeepLabV3 [108]
and UPerNet [97].

Decoder performance across fixed encoders: In the first
three blocks of results in Table IX, we alternately fixed
the encoder (ResNet50, ConvNeXtV2, and Swin-Base) while
varying the decoder (UNet, SegFormer, DeepLabV3, UPer-
Net). The choice of decoder is particularly important when
using the ResNet-50 encoder. Indeed, there is a 10.2% gap
in mIoU and a 2.9% difference in OA between the best
and worst-performing decoders. Spatial context is known to
be very important in the case of semantic segmentation for
land cover classification. As a consequence, decoders that
incorporate mechanisms to enhance spatial context, such as
DeepLabV3 and UPerNet, outperform U-Net. These results
had already been observed in [12] for a ResNet-34 encoder
and FPN, DeepLabV3 decoders. Although the SegFormer
decoder is designed to capture spatial context, its relatively
lower parameter count appears to limit its ability to produce
strong results. The impact of decoder choice on performance is
considerably reduced when using Swin-Base or ConvNeXtV2
encoders. With the ConvNeXtV2 encoder, the performance
difference between decoders is only 1.1% in mIoU and 0.7%
in OA; with the Swin-Base encoder, the difference is 3.5%
in mIoU and 1.9% in OA. We hypothesize that when the
encoder effectively captures spatial context and learns spatial
relationships between objects, the specific decoding strategy
becomes less critical. Notably, with these encoders, the U-Net
decoder consistently achieves the best results.

Encoder performance with fixed decoder: In the fourth
block of results in Table IX, the decoder is fixed to UPerNet,
while several encoders are tested to evaluate their impact on

TABLE IX: Per-Class Evaluation for Land Cover Segmentation – Comparison of Architectures. Class-wise IoU scores for different encoders and
decoders baselines using aerial imagery only.
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ResNet50 UNet 51.5 72.6 80.3 32.5 56.2 70.8 44.3 46.6 82.8 0.6 48.1 52.4 30.2 72.7 69.2 58.7 26.7 32.5 48
ResNet50 SegFormer 51.6 72.5 77.3 56.1 52.6 69.2 40.8 46.7 81.0 0.9 48.7 54.0 25.3 71.5 69.4 57.5 23.6 24.8 19
ResNet50 DeepLabV3 61.7 75.5 81.1 70.1 58.0 73.1 54.0 58.6 86.8 72.1 50.8 54.9 32.6 75.1 70.4 60.6 27.0 39.6 76
ResNet50 UPerNet 58.9 74.2 80.0 71.0 53.6 72.0 52.4 57.8 85.7 47.8 48.0 53.4 33.2 74.4 69.2 58.4 27.1 30.0 49

ConvNeXtV2 UNet 64.2 77.2 84.2 76.2 60.0 75.2 56.2 63.0 89.0 72.5 54.2 57.1 36.3 77.5 71.3 60.4 29.3 92.8 46
ConvNeXtV2 SegFormer 63.1 76.5 83.6 74.0 59.8 74.5 56.5 62.6 88.8 67.1 51.9 55.2 32.9 77.1 71.3 61.3 29.9 88.5 39
ConvNeXtV2 DeepLabV3 63.25 76.8 83.7 75.4 59.2 75.2 56.3 60.6 89.2 65.4 52.8 56.9 34.6 77.5 71.2 60.5 30.3 96.2 35
ConvNeXtV2 UPerNet 63.8 77.0 83.5 76.5 59.4 74.8 56.5 63.0 89.5 67.8 53.8 57.3 34.7 78.5 70.8 61.2 29.2 90.2 57

Swin - Base UNet 64.8 77.9 84.7 79.0 62.2 76.2 57.5 64.2 90.6 63.8 54.9 58.3 37.6 78.3 72.0 62.5 30.1 92.0 100
Swin - Base SegFormer 64.4 77.4 83.5 77.2 61.1 75.4 57.4 63.4 89.2 67.3 53.5 58.0 38.4 78.4 71.4 62.8 29.7 87.6 49
Swin - Base DeepLabV3 61.3 76.0 80.2 73.6 44.7 72.0 55.2 60.3 89.4 64.0 51.7 57.4 34.8 77.8 69.6 61.7 27.8 95.4 106
Swin - Base UPerNet 64.1 77.5 83.9 78.4 61.6 75.7 57.2 62.9 90.3 63.4 54.3 57.1 34.8 77.7 71.7 62.6 30.2 89.4 79

ResNet50 UPerNet 58.9 74.2 80.0 71.0 53.6 72.0 52.4 57.8 85.7 47.8 48.0 53.4 33.2 74.4 69.2 58.4 27.1 30.0 49
ResNext50 UPerNet 58.5 74.5 81.0 73.0 54.6 72.2 53.1 57.8 86.2 32.5 49.1 55.5 31.0 77.0 68.5 57.7 27.7 29.4 87
HRNet32 UPerNet 61.2 75.1 81.6 69.9 58.1 73.1 53.6 60.8 86.6 66.6 50.4 55.2 33.0 74.8 68.9 56.0 28.9 33.4 90
ConvNextV2(t) UPerNet 62.7 76.4 82.6 75.3 59.1 73.8 55.1 60.2 88.6 64.8 53.2 55.8 35.4 76.1 70.9 60.6 29.5 29.8 43
MiT-B2 UPerNet 62.7 76.2 83.2 77.9 57.8 74.8 56.3 62.2 88.4 57.3 51.3 56.5 37.4 79.1 69.7 58.4 30.1 25.6 81

Swin - Tiny UPerNet 62.2 76.2 82.4 72.1 58.7 74.3 55.7 60.9 88.5 64.4 52.6 55.4 30.8 76.4 70.9 60.4 28.9 29.4 111
Swin - Small UPerNet 63.2 76.9 83.5 77.0 60.8 75.0 56.4 61.4 89.4 56.8 53.5 57.1 37.7 77.6 70.9 61.9 28.7 50.7 114
Swin - Base UPerNet 64.1 77.5 83.9 78.4 61.6 75.7 57.2 62.9 90.3 63.4 54.3 57.1 34.8 77.7 71.7 62.6 30.2 89.4 79
Swin - Large UPerNet 64.8 77.7 84.1 77.4 61.5 75.9 57.6 64.1 90.4 68.5 54.4 58.2 36.1 79.0 71.7 63.0 30.2 199.4 106
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performance. Among the encoders, the ConvNextV2 yields
the best performance with approximately 30 M parameters,
comparable in size to the Swin Tiny. As expected, transformer-
based models, such as Swin-Tiny and MiT-B2, outper-
form traditional CNN-based architectures,such as ResNet50,
ResNeXt50, and HRNet32, confirming recent trends in seman-
tic segmentation literature. However the ConvNextV2 demon-
strates competitive performance with Swin Transformers, de-
spite being a convolution-based architecture. This highlights
the significance of modern optimization paradigms compared
to new module (such as attention), which appear to play a
crucial role in achieving state-of-the-art results.

Despite this, we ultimately selected the Swin Transformer
as our default encoder due to its favourable balance between
accuracy and computational efficiency across different config-
urations, and its greater maturity in modular integration with
existing frameworks. We opted for UPerNet as the decoder in
our final pipeline due to its flexibility and compatibility with
multi-scale feature fusion. Moreover, the Swin-UPerNet archi-
tecture won the FLAIR #1 challenge [10] and, we observed
that the hierarchical nature of Swin encoders helps to mitigate
stitching issues between overlapping patches during inference
on very large areas and demonstrates greater robustness within
our production lines.

Scaling Swin encoders: performance vs. complexity: Fi-
nally, in the fifth part of Table IX, we evaluate the impact
of encoder size by testing variants of the Swin encoder
architecture. The best performance is achieved with the Swin-
Large encoder. This can be attributed to the large volume
of annotations available in the FLAIR-HUB dataset, which
supports training more complex models. However, the perfor-
mance gain compared to the Swin-Base encoder is modest,
with only +0.7% in mIoU and +0.2% in OA, despite Swin
Large having more than twice the number of parameters. This
trade-off between model complexity and performance led us
to adopt the Swin-Base encoder as the baseline configuration.

B. Multimodality Fusion

B.1 Land Cover Mapping

In Table X, we report land cover segmentation performance
across various combinations of input modalities, using a
fixed UPerFuse architecture (see Section V) and identical
hyperparameters. The best results are achieved when
incorporating nearly all available modalities (denoted LC-
L), reaching 78.2% OA and 65.8% mIoU. Notably, the
inclusion of historical imagery appears to slightly reduce
performance (LC-L vs. LC-ALL). This outcome is expected,
since historical images were primarily included to support
future transfer learning tasks. Their purpose is to enable
models trained on recent very high-resolution (VHR) data
to generalize to much older imagery. However, the domain
gap and temporal shift of these images introduces noise that
affects segmentation accuracy.

LC-A vs. LC-L: Adding all available modalities yields only
marginal improvements compared to using the Aerial VHR
modality alone (OA: +0.9%, mIoU: +1.7%). Users applying
the models in production environments must carefully
consider whether these modest gains justify the additional
complexity and preprocessing effort required for multimodal
data. However, the current limited improvement is likely
explained by the annotation process, which was performed
on the Aerial VHR images. As a result, this modality benefits
from strong geometric and temporal consistency with the
reference data, which likely facilitates model learning and
performance.

LC-A vs. LC-B: Adding elevation information to the
Aerial VHR images provides a consistent improvement
in performance (OA: +0.6%, mIoU: +1.0%). As shown in
Table XI, this benefit is also observed at the class level. Nearly
all classes show increased IoU scores when 3D information

TABLE X: Quantitative Evaluation for Land Cover Segmentation. Performance of the UPerFuse architecture with different input modalities during training
and testing. Auxiliary losses are used in configurations with more than one modality. PARA.: number of model parameters (in millions). EP.: epoch with
best validation score. SITS: Satellite Image Time Series. S1/2: Sentinel-1/2.

Model ID Aerial VHR Elevation SPOT S2 SITS S1 SITS Historical PARA. EP. O.A. mIoU

LC-A ✓ 89.4 79 77.5 64.1

LC-B ✓ ✓ 181.4 124 78.1 65.1

LC-C ✓ ✓ ✓ 270.6 131 78.2 65.2

LC-D ✓ ✓ 93.9 85 77.6 64.7

LC-E ✓ ✓ 95.8 98 77.7 64.5

LC-F ✓ ✓ ✓ 97.7 64 77.7 64.9

LC-G ✓ 0.9 89 57.8 34.2

LC-H ✓ 1.8 106 54.5 28.2

LC-I ✓ 89.2 94 64.1 43.5

LC-J ✓ 89.4 97 67.4 51.2

LC-K ✓ ✓ 181.4 45 77.6 64.3

LC-L ✓ ✓ ✓ ✓ ✓ 276.4 121 78.2 65.8

LC-ALL ✓ ✓ ✓ ✓ ✓ ✓ 365.8 129 78.2 65.6
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is included. The only exception is the snow class, for which
IoU decreases. While altitude data is expected to reduce class
confusion, its effectiveness appears limited in regions with
low visual texture. In such cases, noise and artefacts in the
elevation data may introduce additional sources of confusion,
offsetting potential gains.

LC-B vs. LC-C: Incorporating SPOT imagery alongside
VHR and elevation data is expected to provide additional
value for two main reasons. First, the availability of a
second temporal observation of ground objects, even at a
coarser 1.6-meter resolution, may assist in distinguishing
certain classes. Second, and more importantly, SPOT data
are absolutely calibrated in ground surface reflectance.
This radiometric consistency has the potential to reduce
discrepancies between the radiometric properties of various
VHR aerial images. Despite these theoretical advantages,
the addition of SPOT data does not lead to any notable
improvement in segmentation performance (OA: +0.1%,
mIoU: +0.1%).

LC-A vs. LC-D.E.F: The addition of time series modalities
results in only limited performance gains. Specifically,
including Sentinel-2 time series (LC-D) yields an increase
of 0.1% in overall accuracy and 0.6% in mIoU. Adding
Sentinel-1 time series (LC-E) leads to a gain of 0.2%
in overall accuracy and 0.4% in mIoU, while the use of
Sentinel-1 and Sentinel-2 (LC-F) does not provide a change in
overall accuracy and an increase of 0.4% in mIoU. In theory,
temporal information could help reduce confusion between
certain land cover classes, such as deciduous and coniferous
forests or herbaceous and agricultural areas. However,
the observed improvements are minimal and as shown in
Table XI, the limited contributions are consistently small
across classes and across the different temporal modalities

(S1, S2, and S1+S2). The only notable exception is the
plowed class, for which mIoU increases by 2.1% with S2
images, 2.3% with S1 images, and 3.1% when both are
used. This finding highlights a form of complementarity
between optical and radar time series for this specific class.
The results for LC-D can also be compared with those from
FLAIR #2 [11, 12], where the addition of Sentinel-2 images
led to larger improvements: an mIoU gain of 1.23% using
fixed hyperparameters, and up to 3.90% when comparing best
runs and optimized hyperparameter settings. A key difference
between FLAIR-HUB and FLAIR #2 is the removal of the
super-patch data, which involved the use of larger spatial
footprints for Sentinel-2 patches. This suggests that the
performance gains observed in FLAIR #2 were more likely
due to an expanded spatial context rather than the model’s
ability to learn temporal features.

LC-A vs. LC-G.H.I.J: When using only a single input
modality, we can observe that the LC-A (Aerial VHR)
configuration performs very well, coming close to the best
results achieved with multiple sources of information. These
results indicate that the shape and texture of land cover
objects, well captured by very high spatial resolution, are
key variables for their discrimination. The single-modality
temporal configurations Sentinel-2 (LC-G) and Sentinel-1
(LC-H) are less effective, with respective mIoU scores of
34.2% and 28.2%. These results are disappointing but can
be explained by the fact that the size of objects in several
land cover classes from the nomenclature is on the same
scale or smaller than the spatial resolution of Sentinel-2
and Sentinel-1 images. The class-wise metrics (Table XI)
highlight, for example, the inability to effectively learn the
greenhouse and swimming pool classes. Furthermore, it is
worth noting that the chosen baseline for encoding temporal
information, UTAE, has very few parameters (on the order

TABLE XI: Per-Class Evaluation for Land Cover Segmentation. Per-class performance of the UPerFuse architecture with different input modalities.
Auxiliary losses are used in configurations with more than one modality.
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LC-A 64.1 83.9 78.4 61.6 75.7 57.2 62.9 90.3 63.4 54.3 57.1 34.8 77.7 71.7 62.6 30.2

LC-B 65.1 85.1 80.4 62.5 76.2 58.1 64.1 90.8 62.6 55.2 57.8 37.8 79.6 72.3 63.1 31.3

LC-C 65.2 85.2 79.1 62.1 76.4 58.3 64.8 90.9 64.4 55.1 58.4 37.4 78.6 72.3 63.4 31.8

LC-D 64.7 84.0 78.9 61.2 75.8 57.5 63.0 90.5 68.3 54.4 57.5 36.9 78.1 71.9 62.9 29.4

LC-E 64.5 84.1 78.9 62.0 76.0 57.6 63.7 90.6 62.7 54.7 57.4 37.1 78.1 71.9 63.1 30.2

LC-F 64.9 84.0 79.3 61.1 75.6 57.7 63.8 90.5 68.1 54.9 56.9 37.9 78.1 71.7 63.7 29.6

LC-G 34.2 34.9 0.0 0.0 38.3 27.4 33.6 65.3 67.5 34.4 42.1 10.2 41.1 56.0 48.2 14.5

LC-H 28.2 42.4 1.3 0.0 35.7 23.0 36.8 57.5 10.7 29.4 42.3 5.5 25.2 53.1 46.5 13.7

LC-I 43.5 57.2 49.8 13.8 53.2 40.0 44.0 71.0 62.0 36.9 48.2 4.6 42.1 58.7 52.9 18.1

LC-J 51.2 76.1 70.3 27.0 58.5 38.8 49.6 82.1 81.7 37.5 50.9 11.9 50.4 63.3 46.0 23.8

LC-K 64.3 83.8 77.6 59.4 75.5 57.4 63.1 90.0 62.6 53.5 57.9 38.0 78.6 72.5 64.2 30.7

LC-L 65.8 85.3 79.1 62.0 76.6 58.2 64.7 90.5 73.4 55.1 58.6 37.5 78.6 72.3 63.5 31.1

LC-ALL 65.6 85.3 80.3 62.8 76.5 58.5 65.1 90.8 67.6 55.0 58.6 37.9 78.4 72.3 63.2 31.4
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of one million), which is significantly smaller compared to
the Swin-Base baseline, with around 90 million parameters.
The results achieved using only the SPOT source (LC-I)
are satisfying with 64.1% of OA and 43.5% mIoU. We still
observe difficulties in learning classes with small objects,
while the IoUs for the other classes remain close to the
aerial configuration. Furthermore, the land cover annotation
is temporally and spatially consistent with the Aerial VHR
source. Therefore, it is not a true reference for computing
metrics on the SPOT image. This is reflected in the poor
results for the plowed class. The configuration using only the
Elevation modality (LC-J) achieves good results, with 67.4%
OA and 51.2% mIoU. The first channel of this modality,
the DSM (Digital Surface Model), is derived from the same
source images as those used to produce the Aerial VHR
modality. However, we observed that combining Aerial VHR
with Elevation yields results very similar to using Aerial
VHR alone. This suggests that features such as object texture
and shape can also be learned from the Elevation modality
alone. The addition of color remains crucial for several
classes, such as swimming pools, differences between types
of non-vegetated soils (impervious, pervious, or plowed),
and for distinguishing various types of vegetation (vineyards,
coniferous).

In Table XII, we report the performance of various network
architectures under the LC-F configuration, with and with-
out enhancement strategies. These strategies include modality
dropout (dropout), auxiliary losses (auxloss), and monthly
temporal averaging of time series inputs (sentemp). To evaluate
the variability of the training process, we also include the
results of a 5-fold cross-validation, which are presented in the
final rows of Table XII.

Enhancement strategies yield modest and inconsistent im-
provements across classes. The auxiliary loss configuration

achieves the highest overall mIoU (64.9%) and shows slight
gains for classes such as greenhouse (+1.0%), snow (+6.3%),
herbaceous (+1.0%), and coniferous (+0.6%). These results
suggest that auxiliary losses may support better training dy-
namics by improving gradient flow and promoting more effec-
tive use of multimodal inputs. Temporal averaging yields the
highest overall accuracy (77.8%) and small gains for classes
like pool, impervious surfaces, agriculture, and plowed fields.
While the latter improves slightly (from 38.0% to 38.2%),
the limited magnitude of these changes makes it difficult to
draw strong conclusions about the specific benefits of temporal
averaging. The modality dropout configuration does not lead
to significant overall improvement. Some class-level variations
are observed, such as higher IoU for snow (+9.4%), but
these may reflect training variance rather than a consistent
effect. When combined with auxiliary loss, performance again
reaches 64.9% mIoU, though with a different distribution of
class-level gains. Overall, the enhancements show only limited
impact, and their contributions appear to be context-dependent.

The 5-fold evaluation highlights the impact of dataset parti-
tioning on model performance (see Section IV-B for details).
While the average mIoU across folds is 66.8% with a standard
deviation of ± 1.6, split 1 stands out with notably lower scores
(mIoU: 64.3%, OA: 77.5%) compared to the other folds,
which exceed 66% mIoU and reach up to 69.1%. This drop
is likely due to the larger validation set in split 1, which
combines FLAIR #1 and FLAIR #2 test sets domains. Sub-
stantial variability is noticeable at the class level. For instance,
snow IoU ranges from 61.8% in split 1 to 92.8% in split 2,
largely due to differences in the presence of snow-covered
areas in the training, validation and test sets. This uneven
representation directly impacts the learning and evaluation
and contributes to the observed fluctuation. Similarly, plowed
class increases from 38.0% to 53.9%. Other classes such as
greenhouse (± 7.5) and bare soil (± 4.6) also exhibit marked

TABLE XII: Per-Class Evaluation for Land Cover Segmentation – Ablation Study. Class-wise IoU scores for the Swin Base-UP baseline using aerial
imagery and Sentinel-1/2 time series (denoted setting LC-F). Results include mean and standard deviation over a 5-fold training and evaluation procedure.
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Evaluation on Fold 1

LC-F - 64.3 77.5 84.1 78.3 61.5 75.8 57.1 63.7 90.5 61.8 53.9 56.9 38.0 78.1 71.8 63.1 29.4 95.2 72
+ dropout 64.3 77.3 83.1 77.4 57.5 75.0 57.5 63.6 89.3 71.2 54.7 56.6 36.4 78.8 71.6 62.2 29.8 95.2 61
+ auxloss 64.9 77.7 84.0 79.3 61.1 75.6 57.7 63.8 90.5 68.1 54.9 56.9 37.9 78.1 71.7 63.7 29.6 97.7 64
+ sentemp 64.7 77.8 84.1 78.3 62.0 75.9 57.6 63.9 91.0 64.9 54.7 58.4 38.2 78.3 71.7 63.0 29.3 95.2 86
+ aux & drop 64.9 77.3 83.4 78.3 58.4 75.1 57.1 65.5 90.6 76.3 53.3 57.2 36.5 78.3 71.8 62.3 29.2 97.7 79

5-fold Evaluation

LC-F split 1 64.3 77.5 84.1 78.3 61.5 75.8 57.1 63.7 90.5 61.8 53.9 56.9 38.0 78.1 71.8 63.1 29.4 95.2 72
LC-F split 2 67.4 79.7 82.7 58.2 57.4 75.1 59.5 67.2 90.5 92.8 54.4 65.2 47.0 81.1 76.2 62.4 41.0 95.2 43
LC-F split 3 66.9 78.6 84.6 75.9 60.0 75.4 59.7 69.2 86.4 78.0 54.1 62.3 42.5 82.4 73.2 59.9 39.9 95.2 66
LC-F split 4 69.1 80.0 86.1 78.0 60.0 75.0 52.4 73.4 91.6 81.2 55.3 67.5 53.9 89.0 75.2 63.8 33.5 95.2 49
LC-F split 5 66.2 79.2 84.7 73.5 60.6 76.6 58.8 59.8 88.7 62.4 55.0 63.4 53.7 82.4 75.1 63.1 34.9 95.2 78

Average 66.8 79.0 84.4 72.8 60.0 75.6 57.5 66.7 89.5 75.2 54.5 63.1 47.0 82.6 74.3 62.5 35.7 - 62
± 1.6 0.9 1.1 7.5 1.4 0.6 2.7 4.6 1.8 11.8 0.5 3.5 6.2 3.6 1.6 1.4 4.3 - 13
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TABLE XIII: Quantitative Evaluation for Land Cover Segmentation. Performance of the best configuration (UPerNet architecture) on the FLAIR #1 [10]
and FLAIR #2 (also FLAIR) [11, 12] test sets. The metrics are computed only on 12 classes (and not 15). PARA.: number of model parameters (in millions).

Model Input Data
Supervision
Pixel ×109

PARA.
FLAIR #1 FLAIR #2

mIoU mIoU

U-Net [10] aerial, Topo 20.3 24.4 55.7 X

U-T&T [12] aerial, Topo, Sentinel-2 20.3 27.3 X 58.6

UPerFuse (LC-L) aerial, Topo, SPOT, Sentinel-1&-2 63.2 276.3 64.1 65.0

differences, indicating that spatial and seasonal heterogeneity
in both training and test splits significantly influences class-
level generalization.

Table XIII reports the performance of our best configuration,
UPerFuse (LC-L), on the FLAIR #1 [10] and FLAIR #2
[11, 12] test sets. The model achieves 64.1% mIoU on FLAIR
#1, compared to 55.7% with U-Net, and 65.0% on FLAIR
#2, compared to 58.6% with U-T&T. These improvements
are notable but must be interpreted with care: UPerFuse was
trained on a much larger dataset, with nearly three times
more annotated pixels, and supervision was applied over 15
classes, although the metrics here are computed on 12. The
input configuration also includes additional modalities such
as SPOT and Sentinel-1, which were not used in the previous
baselines. The gains observed are therefore the result of
several combined factors, including model capacity, input
diversity, and training data volume.

B.2 Crop Type Mapping

Table XIV presents the performance of various
configurations for the crop mapping task. Some classes

are excluded from the mIoU computation due to their absence
in the test set. Overall, the results underscore the difficulty
of the task, particularly as the number of target classes
increases. This is especially evident in the lower mIoU scores
observed in the last rows of the table, which correspond to
more detailed nomenclatures. The performance degradation is
largely attributable to strong class imbalance and the presence
of rare or sparsely represented classes. A more granular
analysis is provided in Table XV, which reports per-class
IoU scores for the Level-1 crop mapping task across different
input modality configurations. These results are based on the
Swin-Base UPerNet baseline, with auxiliary losses applied
in all multimodal settings. This table highlights the impact
of input modality combinations on class-wise performance
and reveals the high variability in segmentation accuracy,
particularly for rare crop types.

Severe Imbalance in Crop Type Distribution: It is im-
portant to note that the ROIs in the dataset were originally
selected for the land cover mapping task. As a result, the
class distribution is highly skewed for crop classification:
the background class alone accounts for approximately 78%

TABLE XIV: Quantitative Evaluation for crop mapping. Performance of the UPerFuse architecture with different input modalities. PARA.: number of
model parameters (in millions). EP.: epoch with best validation score. SITS: Satellite Image Time Series. S1/2: Sentinel-1/2. Classes with zero pixels in the
test set are excluded from mIoU computation.

Model ID Aerial VHR SPOT S2 SITS S1 SITS PARA. EP. O.A. mIoU

LV.1 - 23 classes (2 classes removed)

LPIS-A ✓ 89.4 91 86.6 24.4

LPIS-B ✓ ✓ 181.2 99 87.1 26.1

LPIS-C ✓ ✓ 93.9 100 87.5 29.8

LPIS-D ✓ ✓ ✓ 97.7 80 88.0 36.1

LPIS-E ✓ ✓ ✓ 183.1 46 87.6 30.3

LPIS-F ✓ 0.9 62 85.3 23.8

LPIS-G ✓ 1.8 77 84.5 18.1

LPIS-H ✓ ✓ 2.8 61 84.9 23.8

LPIS-I ✓ ✓ ✓ 97.5 49 87.2 39.2

LPIS-J ✓ ✓ ✓ ✓ 186.9 53 88.0 35.4

LPIS-K ✓ 89.2 14 84.5 15.1

LV.2 - 31 classes (3 classes removed)

LPIS-I ✓ ✓ ✓ 97.5 74 87.5 29.6

LV.3 - 46 classes (8 classes removed)

LPIS-I ✓ ✓ ✓ 97.5 111 87.3 21.4
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TABLE XV: Per-Class Evaluation for 1st Level Crop Mapping. Class-wise IoU scores for the Base-UP baseline with different input modalities. Auxiliary
losses are used in configurations with more than one modality. The rice and other oilseed crops classes are excluded from mIoU computation due to having
zero pixels in the test set.
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LPIS-A 24.4 49.4 34.2 13.1 60.5 3.5 2.7 12.6 38.0 0.0 3.1 13.3 53.9 7.5 19.7 43.4 13.5 36.8 2.9 14.8 1.5 88.6

LPIS-B 26.1 50.1 41.8 16.3 62.0 3.1 2.3 16.6 45.1 0.1 3.0 22.6 57.9 11.6 14.7 42.2 14.4 37.5 1.9 13.8 3.2 88.8

LPIS-C 29.8 49.9 50.1 27.8 75.1 5.5 2.7 22.0 58.7 11.9 4.8 26.2 68.1 9.6 17.2 41.2 19.5 36.1 1.5 7.1 1.3 88.7

LPIS-D 36.1 51.3 59.9 40.9 77.5 7.0 9.3 50.2 77.8 28.7 10.1 24.3 79.6 7.4 20.2 42.3 13.0 36.7 15.8 12.8 4.0 88.7

LPIS-E 30.3 50.4 48.7 20.1 76.2 3.7 0.6 26.6 63.4 7.9 8.5 24.9 75.9 11.4 25.8 41.1 9.4 35.6 1.9 13.5 2.6 88.8

LPIS-F 23.8 43.1 59.6 48.8 68.8 2.6 0.0 28.0 70.9 12.4 20.9 22.8 1.5 0.0 10.1 24.5 0.0 0.0 0.0 0.0 0.0 86.3

LPIS-G 18.1 37.0 53.9 10.6 45.2 10.2 0.0 20.5 68.1 2.7 2.0 12.5 0.0 0.0 3.9 20.2 0.0 8.2 0.0 0.0 0.0 86.0

LPIS-H 23.8 44.6 57.5 48.7 61.7 6.7 0.0 42.7 69.6 5.1 15.4 16.7 0.0 0.0 7.9 21.4 0.0 16.6 0.0 0.0 0.0 86.2

LPIS-I 39.2 47.6 65.7 46.0 74.5 14.0 57.0 44.1 81.6 51.8 8.7 28.2 75.2 7.2 22.8 33.0 14.2 27.8 29.8 0.3 5.5 87.6

LPIS-J 35.4 52.0 57.4 31.0 78.3 8.2 10.6 45.8 71.9 33.7 8.9 27.2 75.3 14.4 22.1 44.6 16.4 36.6 6.6 12.1 2.3 88.7

LPIS-K 15.1 42.5 34.3 11.2 28.8 0.3 0.0 2.9 20.6 0.0 0.0 1.9 1.5 0.0 17.7 27.6 0.4 26.5 12.0 0.0 0.1 87.4

of the test set, grasses represent about 12%, and all other
crop classes individually account for less than 2% (as it can
be seen in Table VII). This imbalance significantly impacts
learning and evaluation for most classes. Given the strong
class imbalance in the dataset, OA is more reflective of
the model’s training dynamics and performance on dominant
classes, while mIoU offers complementary insight into class-
wise behaviour. For the Level-1 nomenclature, the highest
OA (88.0%) is achieved by both LPIS-D and LPIS-J, which
include aerial VHR imagery combined with other modalities.
The best mIoU (39.2%) is obtained by LPIS-I, which excludes
aerial imagery and relies solely on SPOT and Sentinel-1/2 time
series. Table XV illustrates the differing behaviour of crop type
classes, which is closely correlated with their frequency at
Level-1 in the dataset. The background class, which accounts
for approximately 78% of the dataset, consistently achieves
the highest IoU scores across all configurations (LPIS-A
to LPIS-J), with a large margin exceeding 28% over the
second-best class. Grasses, the second most frequent class
(around 12%), also attain relatively high IoU values across all
configurations, ranging from 37% to 52%. For the remaining
classes, which are less frequent (between 2.5% and 0.5%),
IoU scores exhibit greater variability across configurations.
This variability appears to be somewhat correlated with the
presence of specific modalities in the input configuration and
therefore varying acquisition dates. However, for very rare
classes, it becomes difficult to identify consistent patterns. A
likely explanation is that the scarcity of training examples for
these low-frequency classes results in high variability between
training runs of the same configuration—variability that is
comparable to that observed between different configurations
thus limiting the ability to draw reliable conclusions.

Comparing Crop Type and Land Cover Mapping Tasks:
While OA increases from LC-A to LPIS-A, the mIoU drops
significantly. This decrease is expected, as land cover classes

are specifically designed to be distinguishable using mono-
temporal aerial imagery, whereas many LPIS classes require
multi-temporal information for correct identification. As a re-
sult, class confusion is more pronounced in the LPIS labelling
task. The increase in OA may seem counterintuitive. A likely
explanation is that the LPIS classes dominating the pixel
distribution (Background, Grasses, and Vineyards) can still
be reliably segmented from aerial imagery alone. These three
classes represent over 88% of the test set pixels, thus inflating
OA despite lower class-wise performance. As expected, multi-
temporal modalities prove more beneficial for the LPIS task
than for land cover segmentation. The addition of Sentinel-1
or Sentinel-2 time series significantly improves mIoU, with an
11.9% gain from LPIS-A to LPIS-D. Moreover, configurations
using only S1 or S2 (e.g., LPIS-F) perform comparably to
the aerial-only LPIS baseline (just a 0.6% drop in mIoU),
whereas they perform substantially worse on the land cover
task (showing a 29.9% drop in mIoU from LC-A to LC-G).

Limitations of Modality Contribution: Configurations that
combine multi-temporal inputs (S1, S2, or both) with high-
resolution imagery (aerial VHR or SPOT) generally achieve
the best performance for the LPIS task. This likely results
from the complementarity of modalities: high-resolution im-
agery provides fine-grained textural features, while time series
data capture phenological dynamics critical for distinguishing
between crop types. However, performance differences across
specific modality combinations are not always intuitive. For
instance, the Aerial+S2 configuration (LPIS-C) does not con-
sistently outperform either of the single-modality baselines
such as Aerial (LPIS-A) or S2 (LPIS-F). In some cases, the
differences are substantial: for example, barley and rapeseed
exhibit IoU drops of 21% and 12.2%, respectively, in LPIS-
C compared to LPIS-F. A similar pattern is observed when
comparing LPIS-I and LPIS-J: adding aerial imagery to a
configuration using SPOT and Sentinel-1/2 time series (LPIS-
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I) results in large IoU decreases for Flax/Hemp (−40.6%)
and Soy (−18.1%). These findings suggest that simply adding
modalities does not guarantee improved performance. The
observed inconsistencies may stem from limitations in both
the dataset and the model architecture. Potential contributing
factors include increased model complexity leading to overfit-
ting, interactions between the main and auxiliary losses when
adding modalities, and limitations of the current temporal
encoder. These factors indicate a need for more effective
fusion strategies and potentially stronger architectures to fully
leverage multimodal data.
Aerial / SPOT modalities: As expected, the mono-temporal
modalities and particularly the aerial imagery yield higher
IoU scores for classes associated with textural patterns vis-
ible in very high-resolution (VHR) imagery. Vineyards and
orchards are notable examples, with very low IoU when
using only S1 and/or S2 modalities, but a significant IoU
increase when aerial data is included in the configuration.
More surprisingly, a similar trend is observed for beetroot
and potato classes, which is more difficult to explain. One
hypothesis is that these crops may exhibit unique spatial or
structural characteristics during the aerial acquisition period
that are detectable at 20 cm resolution. Some classes, such
as wheat and maize, also show relatively high IoU scores
using only aerial imagery. For maize, this may be because
many aerial acquisitions occur when the crop is nearly fully
grown, resulting in distinct textural patterns at VHR scale (see
Figure 1). For wheat, the explanation is less straightforward.
However, given the low IoU scores for other cereals (e.g.,
barley) and the relatively higher frequency of wheat in the
dataset, it is plausible that the model learns generalized cereal
textures and defaults to classifying all cereals (except maize) as
wheat. To better understand why LPIS-I (which excludes aerial
imagery) outperforms LPIS-J (which includes all modalities),
we introduced an additional configuration, LPIS-K, using only
the SPOT modality. Unfortunately, this experiment did not pro-
vide clear answers. In LPIS-K, background IoU sits between
that of LPIS-A (Aerial) and LPIS-F (S2), which aligns with
expectations based on the relative spatial resolutions (20 cm,
1.5 m, and 10 m, respectively). For most other classes, LPIS-
K produces lower or comparable IoU values relative to LPIS-
A, with larger drops for classes characterized by fine spatial
textures (e.g., maize, vineyard) than for those with broader
spatial features (e.g., orchards).
Temporal modalities: As anticipated, S2 appears to be one

of the most informative sources for the LPIS task. When
added to Aerial VHR, it leads to substantial performance
gains: LPIS-C outperforms LPIS-A by +5.4% mIoU, and
LPIS-E outperforms LPIS-B by +4.2%. S2 is also part of the
best performing configuration, LPIS-I. Overall, the addition
of S2 improves the IoU for most cereal, oleaginous, and
proteinous crop classes, with many classes showing gains
between +5% and +15% compared to the same configuration
without S2. In contrast, Sentinel-1 (S1) performs poorly
as a stand-alone modality, which aligns with expectations
given its sensor characteristics. Its contribution becomes
more nuanced when combined with other modalities. For
instance, LPIS-D (Aerial VHR + S2 + S1) significantly
improves over LPIS-C (Aerial VHR + S2), yielding a
+6.5% mIoU gain. However, adding S1 to S2 in LPIS-H
provides no benefit over LPIS-F, and the improvement
from LPIS-E to LPIS-J is modest (+2.0%). These results
suggest that S1 contributes most effectively when paired
with a high-resolution modality, such as Aerial VHR or SPOT.

Table XVI presents class-wise IoU scores for the best
configuration (LPIS-I) on both the validation and test
sets, confirming previous observations. A clear drop in
performance is observed on the test set, with the overall
mIoU decreasing from 81.4% to 39.2%. Several classes,
such as fodder legumes, beetroots, and mixed crops, show
substantial declines, while others like soy and olive groves
are no longer detected at all. This discrepancy highlights
the greater difficulty of the test set and the model’s limited
ability to generalize to unseen regions. This performance gap
is primarily due to the severely under-represented classes and
data split strategy, where the validation set shares zones with
the training data, while the test set covers distinct domains.
Furthermore, an additional challenge of the FLAIR-HUB crop
mapping task is that the different domains span three years,
introducing both spatial and temporal generalization issues.
Crop type classes exhibit greater variability across years
compared to land cover classes, making the task particularly
sensitive to temporal shifts.

In Table XVII, the performance of the LPIS-I configuration
is reported across the five folds of the KFold cross-validation.
OA remains consistently high across splits, ranging from
85.2% to 88.7%, while mean IoU (mIoU) varies more
substantially, from 34.2% to 42.8%, reflecting sensitivity to

TABLE XVI: Per-Class Evaluation for Crop Mapping. Class-wise IoU scores for the Base-UP baseline (setting LPIS-I) on the Validation and Test partition.
The rice and other oilseed crops classes are excluded from mIoU computation due to having zero pixels in the test set.
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Validation 81.4 43.7 77.3 62.4 78.2 16.9 60.1 40.9 83.7 89.8 40.6 57.6 31.2 79.5 50.3 14.8 48.3 11.5 47.5 6.5 0.1 2.4 89.7

Test 39.2 47.6 65.7 46.0 74.5 14.0 - 57.0 44.1 81.6 51.8 8.7 28.2 75.2 7.2 22.8 33.0 14.2 27.8 29.8 0.3 5.5 87.6
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TABLE XVII: Per-Class Evaluation for Crop Type Mapping – KFold evaluation. Class-wise IoU scores for the Swin Base-UP baseline using SPOT
imagery and Sentinel-1/2 time series (denoted setting LPIS-I). mIoU is computed for each fold by excluding classes that have no corresponding pixels in the
test set.
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LPIS-I split 1 39.2 87.2 47.6 65.7 46.0 74.5 14.0 - 57.0 44.1 81.6 51.8 8.7 28.2 75.2 7.2 22.8 33.0 14.2 27.8 29.8 0.3 5.5 87.6 97.5 49
LPIS-I split 2 34.2 88.7 44.8 69.8 56.4 74.4 14.8 2.7 1.9 61.4 85.1 32.5 17.1 31.6 69.7 16.0 24.8 45.4 6.2 36.5 7.2 1.2 3.5 89.5 97.5 108
LPIS-I split 3 39.2 88.0 42.3 75.6 68.0 67.2 10.8 30.2 22.7 60.2 91.4 34.3 39.1 27.8 82.8 4.3 9.9 46.4 14.3 37.3 6.6 0.8 1.3 89.0 97.5 119
LPIS-I split 4 40.7 85.2 37.9 73.3 54.9 76.8 6.5 - 17.9 74.8 81.3 48.8 47.2 20.4 74.2 38.7 13.4 37.8 20.8 34.0 0.3 2.9 5.4 86.6 97.5 57
LPIS-I split 5 42.8 87.4 45.0 72.4 56.0 73.7 9.5 - 8.3 77.3 81.6 49.5 36.8 20.8 68.7 42.5 11.1 46.5 17.3 47.4 - 2.0 2.2 88.0 97.5 43

specific domain characteristics, supervision availability and
acquisition dates regarding phenologies. It is important to
note that mIoU is computed only over the classes present
in the test set for each split, excluding those marked with
dashes. This introduces some complexity when comparing
mIoU values across folds, as the class composition can
differ. Notably, major crop classes such as wheat, maize,
and rapeseed show relatively stable and high IoU scores,
whereas rare or under-represented classes (e.g., nut orchards,
tobacco, and other permanent crops) exhibit large variability
or near-zero performance. These results highlight the strong
impact of class imbalance and domain-specific variation on
class-wise segmentation performance.

C. Multitask training

Table XVIII presents a quantitative evaluation of the
UPerFuse architecture in a multitask setting, comparing its
performance on land cover and crop type mapping when
trained either separately or jointly. Both tasks has been
assigned the same weight for the experiments. Overall,
the results indicate that multitask learning does not yield
performance improvements for either task. In fact, crop
mapping performance slightly decreases in the multitask
setting, with LPIS mIoU dropping from 39.2% (single-task)
to 36.1%, while land cover results remain relatively stable
(65.8% to 64.7% mIoU). This suggests that land cover
segmentation has a more robust learning, likely due to more
balanced class distributions, greater visual separability in
the data and sufficient learning data. The degradation in
LPIS performance aligns with earlier observations about
the complexity of the crop mapping task: the strong class

imbalance, scarcity of rare crop types, and reliance on subtle
temporal dynamics make it more sensitive to architectural
or training changes. Additionally, the moderate increase in
model parameters in the multitask setting does not appear
sufficient to offset this trade-off. These findings highlight
the need for more tailored multitask architectures, as well as
improved strategies to handle data imbalance in crop type
segmentation.

D. Qualitative results

Figure 6 presents patch-level inferences on the test split
across various models for both the land-cover (top) and
crop-type (bottom) classification tasks. For the land-cover
task, the results indicate that using aerial imagery alone
already yields highly accurate predictions. As such, models
incorporating additional modalities that include this source
exhibit only marginal improvements. Nonetheless, certain
confusions—such as those between tree types or between
agricultural and herbaceous covers—are slightly mitigated
when temporal information from complementary modalities
is introduced. In contrast, the LPIS task remains significantly
more challenging, as previously discussed. Quantitative
performance is notably lower, and several rare classes are
often not retrieved, with predictions defaulting to one of
the dominant categories in the supervision dataset. Despite
this limitation, some parcels are accurately classified. The
LPIS-J model, which integrates aerial, SPOT, Sentinel-1,
and Sentinel-2 imagery, appears to yield the most visually
coherent and accurate results.

TABLE XVIII: Quantitative Evaluation in the Multi-task Setting. Performance of the UPerFuse architecture for both land cover and crop mapping tasks.
The evaluation is performed using the best input modality configuration for each task. PARA.: number of model parameters (in millions). EP.: epoch with
best validation score. SITS: Satellite Image Time Series. S1/2: Sentinel-1/2.

Training Model ID Aerial VHR Elevation SPOT S2 SITS S1 SITS PARA. EP. LC mIoU LC O.A. LPIS mIoU LPIS O.A.

Only Land Cover LC-L ✓ ✓ ✓ ✓ ✓ 276.4 121 65.8 78.4 X X

Only Crop Mapping LPIS-I ✓ ✓ ✓ 97.5 53 X X 39.2 87.2

Multi-task LC-L ✓ ✓ ✓ ✓ ✓ 286.6 81 64.7 77.9 34.7 88.1

Multi-task LPIS-I ✓ ✓ ✓ 102.6 87 47.8 66.9 36.1 87.6
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Fig. 6: Comparison of patch-level inference of LC and LPIS models. Top: LC results. Bottom: LPIS results. One can compare the ground truth (labels
COSIA or LPIS) with the predictions of different unimodal or multimodal models. Details of the input data for each model can be found in the Tables X
and XIV.
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To further evaluate model performance, predictions were
extended to larger geographic regions. This qualitative as-
sessment is crucial due to the spatial continuity inherent in
geospatial data. The input ROI is divided into patches, and
overlapping inferences are integrated to reduce edge effects.
Results are shown over two ROI of the test-set in Figure 7
and Figure 8.

For the land-cover task, four models are visualized: aerial-

only (LC-A), Sentinel-2 (LC-G), SPOT-only (LC-I), and the
best-performing configuration (LC-L). Region-level predic-
tions are consistent with patch-level observations, affirming
strong performance in the land-cover task. The Sentinel-2-
only model (LC-G) delivers less precise results, as expected
given its coarser spatial resolution of 10.24 m. Moreover,
this model employs only the UTAE architecture and appears
to generalize less effectively over broad areas compared to

Fig. 7: ROI detections. We provide inference on large zones to illustrate the capacity of the different monomodal and multimodal models. Details of the
input data for each model can be found in the Tables X and XIV.
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Fig. 8: ROI detections. We provide inference on large zones to illustrate the capacity of the different monomodal and multimodal models. Details of the
input data for each model can be found in the Tables X and XIV.
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attention-based alternatives. This limitation is particularly vis-
ible in agricultural zones, where class mixing is observed.
In comparison, the SPOT-only model (LC-I), benefiting from
a finer 1.6 m resolution, yields accurate predictions, though
with less defined parcel boundaries than those seen in the
0.2 m aerial imagery (LC-A). It is worth noting that, due
to differing acquisition dates relative to the aerial imagery
used for ground-truth labelling, some classes—such as plowed
land—are absent in SPOT-based predictions.

Results for the crop-type classification are markedly more
variable. Models relying solely on aerial imagery (LPIS-
A), Sentinel-1 and -2 (LPIS-H), SPOT combined with Sen-
tinels (LPIS-I), and the best-performing configuration (LPIS-
J) demonstrate differing behaviours. Notably, the aerial-only
model performs well in delineating parcel boundaries and
accurately classifies dominant crop types. In contrast, mod-
els using only Sentinel or SPOT data suffer from reduced
spatial resolution, frequently omitting agricultural areas and
exhibiting significant class confusions. However, adding very
high-resolution aerial imagery to the SPOT and Sentinel
modalities in the LPIS-J configuration substantially enhances
visual coherence and parcel delineation, despite slightly lower
overall quantitative scores compared to LPIS-I.

Overall, land-cover classification performs well due to a
balanced dataset and clear annotations, while crop-type classi-
fication remains challenging. Temporal information is helpful
but not fully exploited, and high spatial resolution appears key
in both tasks.

VIII. Perspectives

A. Improving the deep learning model performances

The encoders used in the mono-temporal architectures of
this work were pretrained on ImageNet. However, foundation
models trained with self-supervised learning techniques are
now widely recognized as more effective for pretraining and
transfer [15, 16, 17, 18, 80, 82, 83]. Therefore, it would be
relevant to assess the benefit of using off-the-shelf foundation
models on the FLAIR-HUB dataset. Furthermore, given the
large volume of FLAIR-HUB, training dedicated foundation
models directly on this dataset appears feasible. This could
pave the way for designing foundation models tailored to
temporal or multi-modal tasks.

Several metadata provided with the FLAIR-HUB dataset
were not used in the experiments presented. However, properly
integrating this information into architectures could lead to
performance gains [109, 110]. In particular, certain land cover
classes, as well as all classes in the LPIS nomenclature, ex-
hibit significant variations in appearance throughout the year,
depending on the image sources. Encoding the acquisition date
using the MTD DATES metadata could therefore improve the
temporal robustness of the models. Additionally, it could be
beneficial to encode the geographical location, either through
the MTD GEOM metadata or by using information from the
GeoTIFF file headers. Indeed, class appearances may vary

greatly across different French regions, and incorporating spa-
tial context could help better model this geographic variability.

Both supervision nomenclatures exhibit significant variabil-
ity in class frequency. This aspect was not addressed in the
current study, although it is illustrated in Tables VI and
VII. The classes were assigned binary weights of 1 or 0.
Investigating weighted loss functions, exploring alternative
loss functions [111], or applying different dataset sampling
strategies [112] could lead to significant improvements. Hier-
archical loss functions [113, 114] could also be considered for
the LPIS task to take advantage of the nested structure of the
three levels of the nomenclature.

In our experiments, we focus exclusively on a mid-level
fusion strategy. However, other approaches, such as early fu-
sion (input-level fusion) or late fusion (prediction-level fusion)
could also be explored [78]. In addition, late fusion strategies
may be particularly well suited to self-supervised pretraining
performed independently for each modality.

In the selection of baselines for mono-temporal (Swin UPer-
Net) and multi-temporal (UTAE) image sources, we observe
a significant imbalance in the number of parameters, to the
disadvantage of multi-temporal architectures. For instance, as
shown in Table X, UTAE models have around 1 million
parameters, while mono-temporal setups can reach several
hundred million. It would be valuable to conduct studies aimed
at finding a better trade-off in parameter allocation between
mono-temporal and multi-temporal branches.

B. Other Potential Uses of the FLAIR-HUB Dataset

The FLAIR-HUB dataset could also be of interest to
researchers working on transfer learning and unsupervised
domain adaptation. First, the pretrained weights can be used
to fine-tune models on new visual categories or other types
of sensors (e.g., UAV, thermal imaging) or new tasks (e.g.,
panoptic segmentation).

A thematically relevant application of transfer learning
would be the development of AI models capable of generating
land cover maps of the past [115]. To support this, we have
included the AERIAL 195X modality in FLAIR-HUB. A
promising direction would be to train models using annotations
from recent aerial imagery and apply them to older aerial
images. This type of experiment is also methodologically
challenging due to the significant changes between the two
modalities, including strong radiometric and domain shifts.

Furthermore, novel transfer methods could be evaluated
based on their ability to train a model in a given spatial and/or
temporal domain and transfer it to another in a supervised
or unsupervised manner [116, 117]. FLAIR-HUB includes
74 distinct spatio-temporal domains along with the necessary
metadata to support such experiments.

In the remote sensing community, many studies focus
on super-resolution methods using multiple image sources.
Since the FLAIR-HUB dataset provides image patches with
spatially aligned modalities, it is particularly well suited for
super-resolution methods using single or multiple images
[68, 118, 119]. Specifically, models that aim to enhance the
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spatial resolution of Sentinel-2 images using SPOT or aerial
images could be effectively evaluated using FLAIR-HUB. The
dataset is also tailored for the cloud removal task [94] on
optical images thanks to SAR ones.

The FLAIR-HUB dataset’s Land Cover and LPIS annota-
tions provide an interesting opportunity for remote sensing
image synthesis [120, 121]. These annotations and metadata
can serve as prompts for controlling generative models. These
models could learn to capture the relationship link between
land cover classes and the visual characteristics of the various
sensors enabling the creation of augmented datasets. Such
synthetic data could be used for tasks where annotations are
scarce or expensive to obtain, like change detection [122].

C. Possible Future Extensions of the FLAIR-HUB Dataset

First, the FLAIR-HUB dataset is limited to metropolitan
France. Although France’s territory is quite diverse, featuring
oceanic, continental, Mediterranean, and mountainous biocli-
matic regions, it does not contain tropical or desert areas.
The aerial images were captured under favorable weather
conditions between April and November, leading to a bias in
the acquisition dates (see Figure 1). It could be interesting to
expand the dataset to other countries or sensors (such as UAV)
with a large variation of acquisition conditions (e.g., angle,
weather) but with an interoperable nomenclature to learn more
generic models.

In the coming years, we plan to enhance FLAIR-HUB by
adding new modalities, metadata, or tasks. For instance, we
are waiting for the completion of the national coverage of
France with high-definition LIDAR [123] (at a density of 10
to 20 points per square meter) to incorporate this point cloud
modality as in [63, 66]. Hyperspectral images, such as those in
[63, 70], could also be included. Additional auxiliary data such
as weather, transportation, and socioeconomic indicators [124]
could also be integrated into FLAIR-HUB for multimodal
learning studies.

For approximately 200 ROIs in the FLAIR-HUB dataset,
we are currently generating orthoimages from historical aerial
imagery, spanning from 1960 to 2015. These images will
be accompanied by temporally and spatially consistent land
cover annotations for the semantic segmentation task. This
new supervision dataset will be released upon completion.
Historical aerial imagery presents significant variability in
spatial resolution and radiometric characteristics.

Beyond its thematic interest such as enabling models to
produce temporal series of LABEL-COSIA, this dataset also
offers a valuable opportunity to study the generalization capa-
bilities of AI models when faced with highly heterogeneous
spatial and spectral inputs.Finally, we also have other types of
labels that could be made available in FLAIR-HUB, including
object detection tasks (e.g., wind turbines, solar farms) or
semantic segmentation tasks (e.g., roads, hedgerows, isolated
trees).

One of the most likely annotation extensions involves ex-
panding the LPIS-labelled areas. As mentioned previously,
a current limitation of the FLAIR-HUB dataset lies in the

significant imbalance of LPIS classes, which likely results in
poor model training and high variability across training runs.
Therefore, a priority for improving crop mapping performance
lies more in enhancing the dataset than refining the model
architecture, particularly by increasing the representation of
low-frequency crop-type classes.

However, adding new ROIs or tasks raises several important
questions. First, could the current best-performing land cover
model be leveraged to assist in annotating new ROIs? Second,
in the context of multitask learning, is it possible to integrate
both land cover and crop-type annotations into a unified la-
belling scheme, and how would performance compare between
this joint task and two separate tasks? We have initiated
preliminary investigations to explore these directions, includ-
ing strategies for selecting new ROIs to improve LPIS class
balance (across all three annotation levels), and methods for
merging land cover and crop-type labels into a comprehensive,
multi-class label set. To reduce the need for manual annotation
in new ROIs, we plan to evaluate semi-automated and soft-
labelling approaches, using the current best land cover models.
Once this improved dataset is available, it will facilitate the
exploration of hierarchical classification strategies (particularly
for the second and third levels of crop-type annotations)
and support the creation of a unified benchmark dataset for
evaluating multimodal fusion methods and architectures.

Beyond the crop mapping task, additional annotation types
could further enrich the FLAIR-HUB dataset. For example,
land cover predictions from FLAIR-HUB models are already
employed by IGN to support the development of the OCSGE
product [13]. This land use/land cover product features gener-
alized geometries (with a minimum mapping unit of 200 m2

for buildings and 500 m2 for other classes) and results from
conflation with existing databases such as LPIS. Initially, the
decision was made not to include such generalized labels
due to poor results in generalization. However, we now have
access to OCSGE annotations for existing FLAIR-HUB ROIs,
and they represent a valuable opportunity to assess model
performance under varying degrees of label generalization.

In parallel, it may be worthwhile to introduce instance-
level annotations for specific detection tasks (sometimes called
panoptic segmentation). Notably, parcel boundary detection
could be derived from raw LPIS vector data, while building
detection could leverage existing resources such as the INRIA
aerial labelling dataset [125] or the WHU building dataset
[126]. Building detection is especially relevant, as current land
cover labels prioritize the topmost visible cover (e.g., trees
over buildings), and do not preserve the high-quality building
geometries found in dedicated building databases.

Finally, similarly to other work [127], we are also consid-
ering the generation of textual descriptions for ROIs to enable
patch-level text annotations. This modality could serve to
train CLIP-like models [128] and enhance few- and zero-shot
capabilities, as demonstrated in recent multimodal frameworks
[129].
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IX. Conclusion

We presented FLAIR-HUB, the largest high-resolution mul-
timodal dataset to date for land cover and crop type mapping.
It contains over 63 billion annotated pixels across 2,528 km²
of metropolitan France, with six spatially aligned modalities:
aerial imagery, SPOT, Sentinel-1 and -2 time series, digital
elevation models, and historical aerial photographs. These
diverse sources capture a wide range of spatial, spectral, and
temporal characteristics.

Through extensive benchmarks using state-of-the-art deep
learning models, we highlighted both the challenges and
opportunities of multimodal fusion. Our experiments show that
combining complementary data sources significantly improves
land cover and crop classification. At the same time, they
underscore the difficulty of fine-grained crop mapping, multi-
modal integration, and multitask training in remote sensing.

FLAIR-HUB supports various learning settings, including
supervised and self-supervised training, transfer learning, and
domain adaptation.

By releasing this large-scale, extensively labelled dataset
along with standardized benchmarks, we aim to support re-
producible research and foster progress in the remote sensing,
geospatial, and machine learning communities. FLAIR-HUB
offers value for both methodological development and real-
world applications.

Footprint of computations

The experiments presented in this article required com-
putational resources equivalent to 27 311 hours on a sin-
gle NVIDIA Tesla V100 GPU, producing 528.58 kg CO2e.
Based in France, this corresponds to a carbon footprint of
10.31 MWh, which is equivalent to 48.05 tree-years (calcu-
lated using green-algorithms.org v3.0 [130]).
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