Impacts of artificial intelligence
in Fluid Dynamics research

Paola CINNELLA (paola.cinnella@sorbonne-universite.fr)

SORBONN Yé o0’Alembert

UNIVERSITE X Institut Jean le Rond d'Alembert




Fluid Dynamics

Studies the motion of fluids and their interactions with bodies
under the effect of forces, temperatures or concentration differences, ...

Omnipresent in a range of scientific domains, from aerospace to health

High-fidelity Computational or Experimental Fluid Dynamics (CFD, EFD)
must —> very costly or impossible

Lower-fidelity descriptions

® Generate Al-driven flow models

- Replace costly simulators and experiments with Al

- Supplement incomplete experiments or models by

Nicoud et al.,

2021
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Major advances in Weather and Climate models

= Neural operators learn the solution operator
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= Accurate short to medium-range global predictions at 0.25¢
resolution (about 25 Km)

= Dramatic reduction of CPU cost (factor 1000)
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Figure 1: Aurora is a 1.3 billion parameter foundation model for high-resolution forecasting of weather and atmospheric
I ses. Aurora is a flexible 3D Swin Transformer with 3D Perceiver-based encoders and decoders. At pretraining time, Aurora
is optimised to minimise a loss £ on multiple heterogeneous datasets with different resolutions, variable 1 pressure levels
i then fine-tuned in two stages: (1) short-lead time fine-tuning of the pretrained weights (2) long-lead time (rollout)
o Low Rank Adaptation (LoRA). The fine-tuned models are then deployed to tackle a diverse collection of operational
os at different resolutions




Learn and recognize physical processes

common flow processes within and across flows

= Represent processes in a suitable feature space

= Reconstruct complex environments from simpler components

Challenge: invariant and interpretable features to describe relevant processes
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Clustering of time dynamics (Kaiser et al., JFM, 2014)
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Infer constitutive laws from observations

Known governing equations
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CNN-1 (Baseline)

Optimize, characterize, control

* Automated design and optimization

e Uncertainty quantification

* Digital Twins and real-time simulation

v
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= Pretrained on large datasets
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Large Language models for fluids

fine-tuned on fluid-related datasets
Historical data, pre-existing simulations and experiments, manuals,
literature, user forums

= A measure of human oversight remains critical to ensure correctness
and adapt to evolving context
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Large airfoil models
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Abstract

The development of a Large Airfoil Model (LAM), a transformative approach for answering technical ques-
tions on airfoil aerodynamics, requires a vast dataset and a model to leverage it. To build this foundation,
a novel probabilistic machine learning approach, A Deep Airfoil Prediction Tool (ADAPT), has been de-
veloped. ADAPT makes uncertainty-aware predictions of airfoil pressure coefficient (C,) distributions by
harnessing experimental data and incorporating measurement uncertainties. By employing deep kernel
learning, performing Gaussian Process Regression in a ten-dimensional latent space learned by a neural net-
work, ADAPT effectively handles nstructured experimental datasets. In tandem, Airfoil Surface Pressure
epository of airfoil ex-

]nnuunml data, has been dmlu,ud ASPIRE integrates century storical data with modern reports,
forming an unparalleled resource of real-world pressure measurements. This addresses a critical gap left by
prior repositories, which relied primarily on numerical simulations. Demonstrative results for three airfoils
i i varied flow con-

the foundation for an interactive airfoil analysis tool driven by a large language model, enabling users to
perform design tasks based on natural language questions rather than explicit technical input

Keywords: Deep kernel learning, Gaussian processes, Bayesian inference, Airfoils, Aerodynamics

1. Introduction

Large language models (LLMs) such as ChatGPT [1], Claude [2], and Gemini [3], are now at the forefront
of artificial intelligence (AI), rapidly gaining popularity as they make learning and understanding complex
topics more accessible. Beyond general-purpose LLMs, it is also possible to create specialized models,
designed to answer questions and provide insights on specific topics or datasets [l 5. 6].

In the context of acrodynamics, there are several key questions that aerodynamicists have during the
wing (fixed-wing, rotary-wing, or wind turbine) design process: What is the maximum lift coefficient? Does
stall occur at the leading or trailing edge? How do drag and stall behavior change with Mach number? Is
there a significant pitching moment? These questions inherently involve operations on sectional pressure
coefficients, C,,. This motivates the idea that a LLM for airfoil acrodynamics, or a large airfoil model (LAM),
could be used to answer these queries. To accurately respond to user inquiries, the LAM must be able to
(1) obtain information by leveraging historical data, or (2) in lieu of available data, generate its own C,
distributions and perform the necessary operations to obtain chosen quantities of interest (Qols).

As a first step in the development of the LAM, it is necessary to design a means to predict acrody-
namic properties of airfoils, a requirement ubiquitous across fixed wings, rotorcraft, and turbomachinery.
Traditionally, airfoil properties have been obtained by wind tunnel experiments or computational fluid d
namics (CFD) simulations. With recent developments in computational power and data-driven modeling,




Challenges

Machine Learning models outside their training sets

Need for context-aware generalization techniques
- Learn among different flows
—> Use context information to
=> Include inductive biases from
Careful selection of training data to avoid biases
Data availability? Intellectual property?
—> Health data, military and dual-use applications...
Human supervision and critical analysis remains essential

= Al assistant, not Al researcher!




