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Abstract 

Background: For more than a decade, scientists have been striving to make their datasets 
available in open repositories, with the goal that they be findable, accessible, 
interoperable, and reusable (FAIR).  Although it is hard for most investigators to remember 
all the “guiding principles” associated with FAIR data, there is one overarching requirement: 
The data need to be annotated with “rich,” discipline-specific, standardized metadata that 
can enable third parties to understand who performed the experiment, who or what the 
subjects were, what the experimental conditions were, and what the results appear to 
show.  Most areas of science lack standards for such metadata and, when such standards 
exist, it can be diYicult for investigators or data curators to apply them. 

Methods: The Center for Expanded Data Annotation and Retrieval (CEDAR) builds 
technology that enables scientists to encode descriptive metadata standards as templates 
that enumerate the attributes of diYerent kinds of experiments and that link those 
attributes to ontologies or value sets that may supply controlled values for those attributes.  
These metadata templates capture the preferences of groups of investigators regarding 
how their data should be described and what a third party needs to know to make sense of 
their datasets.   

Results:  CEDAR templates describing community metadata preferences have been used 
to standardize metadata for a variety of scientific consortia.  They have been used as the 
basis for data-annotation systems that acquire metadata through Web forms or through 
spreadsheets, and they can help correct metadata to ensure adherence to standards.   

Conclusion:  Like the declarative knowledge bases that underpinned intelligent systems 
decades ago, CEDAR templates capture the knowledge of a community of practice in 
symbolic form, and they allow that knowledge to be applied in a variety of settings.  They 
provide a mechanism for scientific communities to create shared metadata standards and 
to encode their preferences for the application of those standards, and for deploying those 
standards in a range of intelligent systems to promote open science. 
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Introduction 

Feigenbaum (1984) famously referred to the construction of knowledge bases for intelligent 
systems as “the applied side of artificial intelligence.”  More than four decades later, that 
view seems rather restricted, as AI has moved on in many ways since the era of large, 
symbolic knowledge bases that are meticulously created by hand.   Nevertheless, 
declarative knowledge representations that are inspectable and editable by humans and 
that power intelligent computer systems retain an important place in the world, and they 
are essential in application areas where there are few data from which to drive machine 
learning.  Such knowledge bases are also essential for capturing nuanced distinctions and 
for serving as a blackboard through which a professional community can work to achieve 
consensus on how people—and computers—should act in particular situations. 

In this paper, we show how such knowledge bases can be extremely valuable for encoding 
and communicating how groups of scientists believe research data should be shared.  
Although the idea of sharing scientific data may seem a bit arcane, the ability to access 
research data openly and widely is increasingly seen as essential to the scientific 
enterprise.  There is growing expectation that third parties should be able to retrieve the 
online research results of other investigators to verify experimental claims and to make 
new discoveries.  After the publication of a landmark paper by Wilkinson and his 
colleagues (2016), it has become widely accepted that research datasets should be 
findable, accessible, interoperable, and reusable (FAIR).  Scientists are abuzz with the idea 
that their datasets should be FAIR—both out of a conviction that FAIR data are important 
for the research enterprise and because their publishers and sponsors require it (Tollefsin 
and Van Noorden, 2022).   

Wilkinson et al. (2016) enumerated a collection of “guiding principles” needed for datasets 
to be FAIR.  Although the FAIR principles can seem obscure, they are dominated by a single, 
rather simple idea:  FAIR data need to be annotated with descriptive metadata that are 
“rich” and that adhere to relevant community standards (Musen et al., 2022).  The 
metadata need to provide information about the scientific context of the work (e.g., the 
investigators, the subjects, the experimental conditions, and the reported results) and this 
information needs to be understandable both to humans and to machines.   

We can view descriptive metadata as a comprehensive list of attributes of the experiment 
(tailored to the research domain), including the interventions that are performed and the 
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kinds of observations that are made.  These attributes, taken together, comprise a reporting 
guideline—a standard set of descriptors for a given class of experiment.  The FAIRSharing 
resource (Sansone et al., 2019) provides details for more than 300 such reporting 
guidelines for standardizing metadata across many branches of science.  When 
investigators create a metadata record, they assign a value to each attribute in the relevant 
reporting guideline.  They thus may say, informally, that the subject of the experiment was 
a mouse, that the experiment involved an examination of the tissue in the mouse’s liver, 
that the liver was examined after an intervention that consisted of the administration of 
some drug, and so on.  Thus, the metadata can be viewed as a list of attribute–value pairs.  
For a dataset to be FAIR, at minimum it must include metadata that adhere to a standard 
reporting guideline (i.e., the metadata must include the correct set of attributes for 
describing the experiment) and each metadata attribute must have a corresponding value 
that adheres to the correct datatype (i.e., when appropriate, a term from a standard value 
set or ontology).  When the attributes and values in research metadata adhere to such 
standards, the datasets are more FAIR because searches for metadata have greater recall 
and higher precision, and the datasets are more interoperable and reusable because there 
is (hopefully) no guesswork regarding what experiment was done and what the 
corresponding data mean. 

But there’s a problem.  Despite the advantages of having standardized metadata for 
describing datasets, there are relatively few areas of science where such standards exist, 
considering the many areas of investigation and numerous kinds of experiments that 
researchers may perform.  Moreover, even when there are available standards, 
investigators are often terrible at ensuring that their metadata adhere to those standards 
(Gonçalves and Musen, 2019).  Most online experimental results are annotated in 
idiosyncratic, unsearchable ways, making it virtually impossible for third parties to gain any 
value from the data (Musen, 2022).  There is a groundswell of desire to make scientific 
datasets “AI ready,” but that will never happen until scientific datasets are made FAIR 
through adherence to metadata standards, and that will never happen until such standards 
are more universal and until investigators have the ability to apply such standards in a more 
straightforward manner. 

Our team at Stanford University has been working for the past decade to create the 
infrastructure needed to support the development and application of machine-actionable 
standards for scientific metadata.  At the core of our approach are declarative knowledge 
bases that correspond to templates for specifying discipline-specific metadata standards 
in a structured, consistent manner.  Our work points the way for a generalizable 
infrastructure that can ensure data FAIRness, and it demonstrates that the lessons that the 
AI community learned from knowledge-engineering activities decades ago are still highly 
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relevant in the era of open science. 
 

Materials and Methods 

The Center for Expanded Data Annotation and Retrieval (CEDAR) was established in 2014 
as part of the NIH Big Data to Knowledge initiative (Musen et al., 2015).  At the core of our 
activity has been the CEDAR Workbench (often simply referred to as “CEDAR”), which 
oYers an integrated suite of software tools that allow developers to create metadata 
templates that reflect reporting guidelines for scientific experiments and that allow 
investigators and data curators to easily create standards-adherent metadata that comport 
with those guidelines (O’Connor et al., 2016).  A dedicated template-editing environment 
allows users to enumerate the attributes that should be specified in diYerent metadata 
reporting guidelines, creating templates for the subsequent entry of dataset-specific 
metadata.  In the CEDAR Workbench, the system uses metadata templates to generate on 
the fly Web forms that scientists can use to enter instances of metadata (Figure 1).  The 
system restricts entries in each field of the form to the appropriate data type.  For fields 
whose values are to be taken from pre-enumerated value sets or ontologies, CEDAR 
automatically constructs a drop-down menu to enable selection of the applicable 
controlled term.  Thus, the CEDAR Workbench facilitates the construction of machine-
actionable, human-understandable, standards-based metadata specifications and 
enables investigators to use those specifications to enter experiment-specific metadata 
that adhere to those standards in a straightforward manner.   

The ontologies and value sets that CEDAR uses come from BioPortal, an open repository of 
nearly all the world’s publicly available biomedical ontologies and controlled terminologies 
(Vendetti et al., 2025).  Although BioPortal’s contents, by design, are biomedical, other 
investigators are building ontology repositories designed for other areas of science that 
adopt BioPortal’s code base and APIs (Jonquet et al., 2023).  CEDAR not only presents lists 
of controlled terms from BioPortal, but also it can present controlled terms from standard 
online naming authorities (O’Connor et al., 2025a), such as ORCID (for the names of 
researchers), ROR (for the names of research organizations and institutions), and RRID (for 
the names of research resources, including reagents, chemicals, and strains of laboratory 
animals). 

CEDAR uses a template model for encoding the reporting guidelines that scientific 
communities develop to ensure that the metadata that investigators use to annotate 
datasets are internally consistent, adherent to standards, and suYicient for third parties to 
make sense of the underlying data and to understand the nature of the experiment that was 
performed (Figure 2).  The standards reflected in CEDAR templates may not result from the  
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Figure 1: Web form for creating metadata instances.  The fields in the Web form are 
generated dynamically from a designated metadata template, in this case for a biological 
assay known as RNAseq.  The user has provided values for the first four fields in the forms.   
The template indicates that values for the field “Analyte class” come from a predefined 
value set stored in the BioPortal repository, and the Web form thus displays a drop-down 
menu of possible selections.  Entries in the Web form result in attribute–value pairs that are 
converted internally to JSON-LD, as shown in Figure 3. 

 

arduous, systematized processes used by international standards development 
organizations such as ISO or ANSI, but they nevertheless reflect the explicit preferences of 
communities of investigators for how their data should be annotated.  These community 
standards are what allow the corresponding community to search for research datasets 
online and know what was done to generate the data.  They are what, at minimum, make 
the corresponding datasets FAIR. 
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Figure 2: Relationships between the CEDAR template model, metadata templates, and 
metadata instances.  Each CEDAR template is an instantiation of the template model and 
denotes a reporting guideline for some class of experiment.  A CEDAR template consists of 
a set of fields (attributes) that may be grouped into template elements.  Each metadata 
instance is a set of attribute–value pairs that represents an instantiation of some CEDAR 
template.  Metadata annotate specific datasets, providing discipline-specific information 
about the experiment that led to the data. 

 

At the core of the system is thus our underlying model for the specification of metadata 
templates.  The CEDAR template model provides a framework for representing the 
structure, semantics, and constraints associated with scientific metadata.  The model 
treats metadata standards that adhere to the model as first-class knowledge structures 
that can be authored, versioned, validated, and instantiated.  In the CEDAR model, a 
template formally defines the attributes that constitute a reporting guideline for a particular 
kind of experiment or dataset, including the attribute names, data types, cardinalities, and, 
if indicated, links to the ontologies and value sets that may supply values for the attributes.  
A metadata instance, in turn, is a populated version of such a template—an annotation of a 
specific dataset with structured, standards-adherent information. 

The core entities in a metadata template are template fields and template elements. Each 
template field corresponds to an attribute of a reporting guideline, and has a declared 
datatype (e.g., string, integer, date, controlled term, ROR, ORCID).  Controlled-term fields 
can specify entire ontologies that might supply their values (e.g., Uberon, ChEBI, 
NCBITaxon), specific branches of an ontology (e.g., the “cell type” subtree of the Cell 
Ontology), curated value sets (e.g., analyte class; see Figure 1), or selected ontology terms 
(e.g., the classes "Male", "Female", and "Unknown" from NCBITaxon).  All fields are 
encoded with human-readable labels and machine-resolvable IRIs, enabling both 
validation and semantic traceability. Fields can be grouped into reusable template 
elements, and multiple elements can be composed into a template.  Each of these 
components is itself an addressable, reusable object in the CEDAR ecosystem, with a 
unique identifier and metadata about authorship, provenance, and versioning.  Because 
fields and elements are first-class, reusable entities in CEDAR, commonly used template 
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components (e.g., contributor information, sample descriptors, tissue provenance 
information) can be authored once and reused across multiple templates, promoting 
uniformity in metadata modeling.  In addition, the CEDAR template model allows for rich 
annotations of fields and templates—including descriptions, units, expected formats, and 
prompts and hints that can be displayed by the system when templates are instantiated—
guiding users during metadata entry and ensuring consistency across metadata records. 

CEDAR represents metadata templates in JSON Schema and it encodes metadata 
instances (populated templates) in JSON-LD (Figure 3), enabling CEDAR templates to be 
easily converted to other widely used formats such as RDF and LinkML.  Each field value in 
an instance retains its connection to the corresponding field in the original template, 
including any semantic constraints or references to ontologies from which the value is 
taken.  Thus, for fields whose values come from external ontologies or value sets, the 
instance includes both the human-readable label and the IRIs of the controlled terms from 
the reference vocabularies.  This dual encoding ensures that the metadata are not only 
interpretable by humans but also fully resolvable and interoperable in Semantic Web 
contexts.  The result is a richly annotated metadata record that can be programmatically 
validated, integrated with other linked datasets on the Web, indexed for discovery, and 
used as input for analytic workflows.  Because each instance is grounded in a well-defined 
template with explicit semantics, it becomes possible to align, compare, and federate 
metadata across repositories and domains with minimal ambiguity.  The representational 
choice makes it easy to integrate CEDAR templates with knowledge graphs and collections 
of linked data. 

The scientists and data curators who populate CEDAR metadata templates are completely 
insulated from the underlying representation.  Domain specialists see the template only as 
rendered dynamically by the metadata authoring system (e.g., as in Figure 1), and they 
never need to worry about how metadata entries are encoded.  The metadata templates in 
CEDAR thus can be authored once, often in a collaborative fashion, using simple Web-
based tools where representational details are exposed, and then the templates can 
reused by any number of researchers to capture actual metadata via tools that shield the 
scientists from the arcane aspects of knowledge representation and that create the 
necessary metadata-entry forms as needed directly from the templates. 

 

Results 

CEDAR templates encoded using the CEDAR template model have been used in a variety of 
applications for several years.  We now present some of those applications, demonstrating  
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Figure 3: JSON-LD representation of a metadata instance.  This particular representation 
encodes a small portion of the metadata values for the instance depicted in Figure 1. The 
metadata describe the details of an RNAseq experiment, whose data are being annotated 
with these metadata.  Note that analyte_class has a value from the list of controlled 
terms shown in Figure 1.  Acquition_instrument_vendor and 
acquisition_instrument_model have values that are specific research resource 
identifiers (RRIDs). 
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the advantages of using a core model to represent metadata standards in a reusable, 
machine-actionable manner.  This diversity of implementations underscores how a 
reusable metadata model—by abstracting community standards into structured, machine 
actionable templates—can support consistent, scalable, and interoperable metadata 
practices across a broad range of scientific domains and technical environments.  Once we 
have settled on a reusable metadata model, that model can form the foundation for a wide 
range of practical applications that can have a dramatic eYect on the management of 
scientific data in the real world.  More important, rendering a scientific community’s 
metadata standards as a set of declarative knowledge bases makes those standards 
inspectable, shareable, editable, and reusable—thus streamlining the management and 
propagation of the groundwork that underlies FAIR data. 

 

The CEDAR Workbench 

The CEDAR Workbench is an integrated platform that includes components for (1) creating, 
editing, storing, and sharing metadata templates that comport with the CEDAR template 
model, (2) selecting a metadata template and instantiating it with standards-adherent 
values, (3) selecting a target repository and uploading the instantiated metadata along with 
the associated research data, thereby creating a dataset archive.  All components are 
implemented as a collection of microservices, each accessible via a HTTP-based API, and 
the full set of CEDAR features is accessible via a Web-based user interface.  The 
Workbench has been used by a variety of research consortia for standards-adherent 
metadata management. 

A good example is the NIH initiative for Helping to End Addiction Long-term (HEAL), an 
enormous activity that is addressing the opioid crisis at all levels.  HEAL involves more than 
one thousand projects to identify new therapeutic targets for treating pain and substance 
use disorder, to develop nonpharmacological strategies for pain management, and to 
advance overdose and addiction treatment (Sawyer-Morris et al., 2025). An important goal 
of the HEAL initiative is for experimental data to be open and FAIR, enabling investigators to 
access and reuse data quickly in a rapidly accelerating research environment.   

HEAL uses an extensive data-management infrastructure developed at the University of 
Chicago, along with the original CEDAR Workbench to ensure that datasets are annotated 
with adequate, discipline-specific metadata (Figure 4).  The consortium has worked 
completely independently to access the CEDAR Workbench, to create metadata templates 
appropriate for HEAL studies, and to provide extensive training materials to the HEAL  



 10 

 

Figure 4: The CEDAR Workbench as used by the HEAL consortium.  The figure shows 
CEDAR as used to acquire structured metadata describing a clinical trial, in this case a 
study of transcutaneous electrical nerve stimulation (TENS) for management of 
fibromyalgia. 

 

investigators to help them to annotate experimental datasets in compliance with standards 
developed by the community.  The HEAL investigators have become adept at metadata 
editing using CEDAR, and their use of shared metadata specifications reportedly has 
oYered the scientists in the consortium considerable advantages in building oY one 
another’s work. 

Another NIH consortium, one that attempts to characterize the functions and properties of 
proteins and genes that may serve as good targets for new drugs (“Illuminating the 
Druggable Genome”; IDG), is also a user of the CEDAR Workbench (Vidović et al., 2024; 
Egyedi et al., 2017).  IDG data curators use the CEDAR Workbench to validate and edit 
metadata records to ensure that dataset annotations comport with appropriate standards. 

In the Netherlands, government agencies have taken decisive action to guarantee FAIR 
data.  The Netherlands Agency for Health Research and Development (ZonMw), for 
example, often requires that the investigators whom it supports commit in advance to 
disseminating their research results openly in accordance with predetermined metadata 
standards as a condition of funding (Bloemers and Montesanti, 2020).   A not-for-profit 
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organization, known as Health-RI (2025), disseminates the investigators’ datasets for use 
by the scientific community over the Web, making research results widely available and 
annotated through standardized metadata that researchers author using the CEDAR 
Workbench.   

In all these systems, developers create metadata standards using CEDAR templates, and 
the CEDAR Workbench then guides end-users in instantiating the templates to create 
standards-adherent metadata and, by extension, FAIR datasets.  HEAL, IDG, and Health-RI 
templates all adhere to the CEDAR template model, and they thus can be used in any of the 
three systems. 

 

 

Embedding CEDAR in Other Software 

The CEDAR Workbench was developed as an integrated system.  Often, however, software 
engineers require more flexibility in how they include CEDAR functionality in an overall 
architecture.  We therefore have created the CEDAR Embeddable Editor as a lightweight, 
interoperable Web component that allows CEDAR metadata editing and display 
capabilities to be incorporated easily within third-party Web applications (O’Connor et al., 
2025a).  With the CEDAR Embeddable Editor, developers can easily build CEDAR 
metadata-management functionality directly into their custom applications, reading 
CEDAR-compatible metadata templates and metadata instances from a library that the 
developers designate and allowing end users to display and edit CEDAR-compatible 
metadata from within the particular host system.  This approach has been particularly 
eYective in allowing our collaborators to build CEDAR functionality into general-purpose 
data repositories that are not tied to any specific application area. 

The Open Science Framework (OSF), for example, is an open-source, open-access 
platform that supports a community of over 870,000 investigators in all stages of managing 
the products of their research (Foster and DeardorY, 2017).  OSF is managed by the Center 
for Open Science, and it oYers infrastructure for users to upload, archive, and disseminate 
their datasets in a transparent manner.  The OSF development team has integrated the 
CEDAR Embeddable Editor into their platform, presenting investigators with the ability to 
select conventional CEDAR metadata templates from a library and to author standards-
adherent metadata as needed (Olsen and Corker, 2024).  The OSF implementation allows 
user to fill in CEDAR templates that contain descriptive metadata fields for recording 
information about their experimental setting and subjects as well as structural metadata 
fields that capture details about the configuration of the dataset itself (Figure 5). 
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Figure 5: OSF acquires standardized metadata using the CEDAR Embeddable Editor.  The 
figure shows the template for acquiring Psych-DS metadata, a specification for sharing 
data in the social and behavioral sciences.  Here the user is entering structural metadata 
about a dataset describing a psychological experiment involving visual memory and 
attention. 
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Similarly, Dryad, another very widely used general-purpose data repository, oYers a library 
of metadata templates—all based on the CEDAR template model—and provides users with 
the CEDAR Embeddable Editor to fill in templates and to annotate their datasets in a 
standardized manner.  Although the Dryad work was originally stimulated by a project to 
formalize metadata in cognitive neuroscience (Lippincott, 2024), the Dryad template library 
continues to grow in breadth.  When users upload datasets to Dryad and enter keywords 
that describe their experiment, the system may automatically suggest a discipline-specific 
metadata template appropriate for the submission. 

All OSF and Dryad metadata templates reflect the standard metadata model that governs 
the CEDAR Workbench.  As with the templates used by HEAL and IDG and Health-RI, all 
OSF and Dryad metadata templates are fully interoperable with all other CEDAR-
compatible data-management platforms. 

 

Using CEDAR Templates to Create Custom-Tailored Spreadsheets 

Although our systems can generate sophisticated Web forms directly from CEDAR 
metadata templates, many scientists despise the idea of filling out questionnaires online.  
The use of spreadsheets is more familiar and more natural to them, and they like that 
spreadsheets give them the option to enter metadata for several experiments at once.  
Working with a large NIH-supported consortium known as the Human Biomolecular Atlas 
Program (HuBMAP), which aims to create a master catalog of the biomarkers that 
distinguish every type of cell in the healthy human body (Jain et al., 2023), we have 
developed an approach that transforms CEDAR templates into intelligent spreadsheets, 
and that oYers researchers a simple, well-established mechanism for entering their 
metadata (O’Connor et al., 2025b).  CEDAR thus can use the same metadata templates 
that it uses to render Web forms to generate spreadsheets (Figure 6).  Users select a 
metadata template from the CEDAR library, and the system generates a spreadsheet 
(either in Excel or as a Google sheet) in which each column corresponds to a separate 
metadata field from the template.  To manage metadata from collections of multiple 
experiments, each row in the spreadsheet captures metadata entries from a diYerent 
experiment of the same type.  The datatype of each field type is stored in the CEDAR 
template, allowing the system to create a spreadsheet that, to the extent possible, 
enforces the correct datatype for each cell in the corresponding column.   

The problem with spreadsheets is that users can cheat.  They can easily override datatype 
restrictions, entering strings that are not part of predefined value sets or ontologies, or 
typing in floating-point numbers when the field value is supposed to be an integer.   
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Figure 6: A metadata-entry spreadsheet generated from a CEDAR template.  The 
spreadsheet was created from the same template for RNAseq metadata used to create the 
Web form shown in Figure 1.  Like the Web form, the spreadsheet uses a predefined value 
set to ensure that the selected value for “analyte class” adheres to the given standard. 

 

Scientists, of course, enjoy this flexibility, but the creation of nonstandard metadata entries 
risks the generation of datasets that are not FAIR.  When metadata do not adhere to 
standard reporting guidelines, datasets are not easily searchable, and interoperability of 
the metadata cannot be guaranteed.  We therefore have created a spreadsheet validator 
that reviews the spreadsheet-based metadata, identifying possible errors and suggesting 
how the errors might be corrected (O’Connor et al., 2025b).  The validator can perform 
these functions because it, too, has access to the CEDAR template that was used to create 
the spreadsheet in the first place, and the template provides the knowledge needed to 
analyze the spreadsheet entries and to determine potential modifications for any values 
that may deviate from the intended standard (Figure 7). 

 

Summary 

As use of the CEDAR software has become more widespread, the underlying technology 
has evolved, and the approach has taken on new capabilities.  At its core, however, the 
CEDAR template model has not changed, allowing the generation of metadata descriptions 
that (1) adhere to community-based standards for their content and (2) are formatted in a 
standardized knowledge-representation system for their structure.  Like cassettes that can 
be plugged into a variety of playback systems, CEDAR metadata templates are compatible 
with a range of software systems that each contribute to data management tasks in 
diYerent ways. 
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Figure 7: The CEDAR Metadata Validator to ensure the correctness of spreadsheet data.  
The Validator takes as input a metadata spreadsheet such as the one in Figure 6 and uses 
the corresponding CEDAR template to analyze the metadata to identify (1) missing values 
and (2) values that deviate from the standard.  When there are errors in the metadata, the 
system can suggest possible fixes for the user to consider.  The approach is used in 
HuBMAP to ensure that spreadsheet-based metadata remain adherent to the consortium’s 
standards. 

 

Discussion 

For the past decade, our group has been developing computer systems that assist with the 
management of research data.  From the Web forms in the integrated CEDAR Workbench, 
to the distributed approach supported by the CEDAR Embeddable Editor, to the 
spreadsheets and validator system that support data stewardship for consortia such as 
HuBMAP, we have engineered widely used systems that make it easy to enforce the use of 
metadata standards when annotating datasets.  Investigators feel enormous pressure from 
sponsors, from publishers, and from their peers in the scientific community to ensure that 
their data are FAIR—at a time when there is widespread confusion over what it is that really 
makes data FAIR in the first place.  All our CEDAR-derived systems have been developed 
with the philosophy that, ultimately, the only component of FAIR data over which scientists 
have direct control is whether the metadata that annotate datasets adhere to standards 
endorsed by the relevant scientific community (Musen et al., 2022).  We consequently see 
a great advantage in making metadata standards for scientific datasets machine 
actionable, and in making it possible not only for computers to reason about the standards 
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and their application, but also to drive a range of metadata-management systems from a 
shared representation that is itself standardized. 

In our work, we posit that scientific communities will want to develop shared models for 
metadata standards, representing those models as templates that enumerate the 
attributes of experiments in their discipline—attributes that capture information about the 
investigators, the experimental conditions, the subjects of the experiment, and the 
collected data.  We see this approach being adopted widely in biology, and we anticipate 
that the notion of discipline-specific reporting guidelines for scientific datasets will take 
hold throughout much of science, particularly as the pressure for FAIR data ratchets 
upwards. 

“Good old-fashioned AI,” as used by CEDAR, provides a highly eYective means for dealing 
with the increasing requirements for FAIR data. There is nothing in the FAIR guiding 
principles, however, that dictates the use of semantic technology.  The FAIR principles 
mandate community-endorsed metadata standards, but they do not indicate how 
metadata should be structured or how they should be shared.  The FAIR principles indicate 
that, when possible, the values of metadata fields should be supplied by terms from 
standard ontologies (specifically, from ontologies that are themselves FAIR), and yet there 
is no discussion of how ontology terms and value sets should be represented within a 
metadata specification.  It is hard to imagine implementing solutions to ensure FAIR data 
without using traditional knowledge-representation techniques, however.  In CEDAR, we 
adopted a lightweight approach to knowledge representation that we knew would be widely 
accepted by the user community that we were targeting.  

CEDAR models metadata templates in JSON Schema, incorporating a pragmatic but 
principled approach to metadata representation.  The CEDAR template model, consisting 
of metadata fields, composite entities, and overall templates (see Figure 2), respects the 
real-world needs of scientific communities while delivering on the promises of semantic 
rigor, reusability, and machine-actionability.  The model supports a simple framework that 
represents metadata as lists of attribute–value pairs, where some groups of attributes may 
be reused across templates and where those groups of attributes may themselves include 
reusable groups of other attributes, recursively.  By treating metadata standards not just as 
documents but as knowledge structures, CEDAR provides a solid foundation for building 
metadata-aware systems that are FAIR by design. 

A CEDAR metadata template is a simple kind of knowledge base.  Like the knowledge 
bases of the expert systems that the AI community pioneered decades ago (Hayes-Roth, et 
al., 1983), CEDAR templates capture in symbolic form the specialized beliefs of some 
community of practice.  The knowledge bases of expert systems encoded beliefs about 
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how professional tasks should be performed (e.g., how to diagnose and treat infection, how 
to configure the components of a computer system, where to drill for oil).  They encoded 
propositions about a task to be performed such that, when some process was applied to 
those propositions, the system would demonstrate behaviors that observers would judge 
to result in solutions on par with those that human experts might oYer.  The process of 
constructing a knowledge base was termed knowledge engineering or knowledge 
acquisition, and early workers in the field often claimed that such knowledge bases allow 
computers to solve complex tasks in a manner akin to the way human experts do (Musen, 
1993).  We now recognize that expert-system knowledge bases at best are crude models of 
how a person might solve a task (Clancey, 1989), but the development of such models is 
nevertheless an important achievement, and many expert systems did—and continue to 
do—remarkably important things. 

CEDAR templates, taken by themselves, do not help to solve tasks.  They contain no 
knowledge of how to address domain-specific problems.  Still, they are knowledge bases—
representations that capture the preferences of a community of practice regarding how 
scientific data should be described to enhance data FAIRness.   

The groups of scientists who create and use CEDAR templates typically have distinct 
opinions regarding how their datasets should be annotated with metadata.  They 
understand what a third party needs to know in order to make sense of a dataset.  They 
often have strong beliefs about what needs to be said about the experimental conditions 
and the subjects of the study for someone to appreciate what was done and to grasp the 
context in which the data were collected.  Most important, they have a basic intuition for 
how such descriptions can be rendered as the attribute–value pairs that constitute modern 
experimental metadata.  The beliefs of the scientific community regarding how to 
constitute discipline-specific metadata translate directly into CEDAR templates, which, 
like classical expert-system knowledge bases, store information about how members of a 
professional community think about their work and about how they prefer to describe the 
results of their skilled activities. 

CEDAR metadata templates are declarative representations, and, like more traditional 
knowledge bases, they can be reused for a variety of purposes.  As we have discussed, they 
can be used to render Web forms, to generate spreadsheets, and to inform systems that 
validate metadata entries.  In other work, we have also shown that CEDAR templates can 
enhance the display of metadata (Martínez-Romano, et al., 2025) and that they can 
markedly improve the performance of large language models asked to convert legacy 
metadata to a form that is closer to a given community standard (Sundaram et al., 2025).  
CEDAR templates thus oYer a canonical form in which a community can store and reuse its 
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preferences for metadata structure and content, making those preferences inspectable by 
humans and actionable by machines; they are very much like the knowledge bases that we 
created in the 1980s. 

Developers create CEDAR templates very much as we used to build knowledge bases for 
expert systems:  Subject-matter experts work with colleagues who understand knowledge 
representation to iron out the details of what needs to be encoded and collaboratively build 
the necessary data structure.  The GO FAIR Foundation (2025), in particular, has worked to 
develop stock methods for creating CEDAR templates through what they term Metadata for 
Machines Workshops.  These meetings, usually held over several days, comprise intensive 
knowledge-engineering sessions that lead groups of scientists through the development of 
reporting guidelines for diYerent classes of experiments, and that translate those 
guidelines into functioning CEDAR metadata templates.   In these workshops, the evolving 
CEDAR templates serves (1) as a blackboard for capturing the participants’ ongoing 
thoughts about what the metadata might describe and, at the end of the activity, (2) as the 
consensus standard for emerging from the group’s deliberations.  As is the case with all 
knowledge-engineering activities, the Metadata for Machines Workshops can be arduous 
and sometimes contentious, but the GO FAIR workers have developed a process for 
managing these sessions that is streamlined as much as possible.    

Consortia such as HuBMAP adopt a more open-ended approach.  HuBMAP has a Data 
Coordination Working Group (DCWG) that comprises both subject-matter expert and 
knowledge-representation specialists.  The group works collaboratively to articulate 
reporting guidelines for diYerent classes of biological assays, to render them as CEDAR 
templates, and to evaluate the use of the templates in practice.  In the past three years, the 
DCWG has created some three dozen templates in this manner.  Although the process of 
developing these community standards was often more iterative and sometimes more 
contentious than the DCWG would have liked, there really was no alternative if the goal 
was to ensure that the consortium’s thousands of datasets would be FAIR. 

Knowledge engineering has always had a bad reputation.  It can be extremely labor-
intensive.  It can be diYicult to model things in a manner to which all parties agree.  It can 
be diYicult for the process to scale.  The advent of modern machine-learning methods in 
the past decade has caused the AI community to focus on data-driven approaches to the 
construction of intelligent systems, and traditional knowledge engineering seems to be 
becoming a lost art.  Still, when the goal is to capture information that has never previously 
been expressed in a “learnable” form, manual knowledge engineering that involves 
intensive interaction with subject-matter experts becomes essential.  It is impossible to 
learn standards for metadata from extant datasets that have been developed without 
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consideration for the need for metadata standards in the first place.  In such situations, 
there is no alternative than for subject-matter experts and domain modelers to sort things 
out. 

The creation of knowledge bases of community-based standards for data annotation is 
bringing great benefits to diYerent groups of scientists.  When a consortium such as 
HuBMAP can render its standards as CEDAR templates, those templates become a 
detailed, examinable reference for those standards (HuBMAP Consortium, 2025).  The 
templates help to ensure that metadata can be standardized from the moment that they 
are created, and that the datasets in the HuBMAP data repository are guaranteed to be 
FAIR.  Such an ecosystem for data management encourages both the development and the 
adoption of community-based metadata standards, and, with the right infrastructure, it 
makes it almost trivial for scientists to adhere to the increasing mandates for FAIR data.  If a 
research community is serious about open science, data sharing, and data reuse, it is not 
clear that there is any alternative to the approach oYered by CEDAR.  The good news is that 
we have several decades of experience in knowledge engineering that can inform the 
development of metadata knowledge bases.  The major challenge is that most areas of 
science lack discipline-specific standards for descriptive metadata, and a continuing 
change in culture is needed to make the development of such standards a priority. 

Scientific culture does change, however.  No one questions the importance of preprints, of 
open access, or of bibliometrics, which are all relatively recent advances.  No one can 
imagine a world in which investigators did not search the scientific literature on their own.  
FAIR data will become ubiquitous with the creation of a seamless infrastructure that makes 
it easy for investigators to develop and apply metadata standards in a transparent manner.  
And, most surprisingly, those advances will be rooted in AI technology that many of us 
thought was on the way out. 

 

Conclusion 
Sponsors, publishers, and the scientific community are increasingly demanding that 
research data be findable, accessible, interoperable, and reusable (FAIR).  FAIR data are 
possible only if research results are described using comprehensive, standardized, 
discipline-specific metadata that make it possible to search for datasets systematically, to 
integrate datasets from diYerent sources, and to know what the investigators actually did.  
CEDAR is technology that can represent a scientific community’s preferences for how to 
standardize metadata in the form of reusable templates.  Experience over the past decade 
shows how CEDAR templates can drive a range of data-management applications.  There is 
an urgent need to develop an infrastructure for science that makes such metadata 
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templates accessible to investigators in a transparent manner, and that stimulates 
research communities both to create comprehensive metadata standards and to represent 
those standards as declarative knowledge bases. 
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