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Abstract

This perspective paper explores the future potential of “conversational intelligence” by
examining how Large Language Models (LLMs) could be combined with GRAPHYP’s
network system to better understand human conversations and preferences. Using recent
research and case studies, we propose a conceptual framework that could make Al rea-
soning transparent and traceable, allowing humans to see and understand how Al reaches
its conclusions. We present the conceptual perspective of “Matching Game Preferences
through Dialogical Large Language Models (D-LLMs),” a proposed system that would
allow multiple users to share their different preferences through structured conversations.
This approach envisions personalizing LLMs by embedding individual user preferences
directly into how the model makes decisions. The proposed D-LLM framework would
require three main components: (1) reasoning processes that could analyze different
search experiences and guide performance, (2) classification systems that would identify
user preference patterns, and (3) dialogue approaches that could help humans resolve
conflicting information. This perspective framework aims to create an interpretable Al
system where users could examine, understand, and combine the different human pref-
Academic Editor: Andrea Prati erences that influence Al responses, detected through GRAPHYP’s search experience net-
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The integration of graph-based reasoning with LLMs has opened up new possibilities
for human—Al interaction [2], particularly in developing personalized Al systems that can
adapt to individual user preferences [3]. However, current approaches face significant chal-
lenges in capturing the nuanced and evolving nature of human preferences, especially in
domains where categorizations are contested or context-dependent. In these contexts, sys-
tem efficiency is reduced as machine learning systems learn from human datasets by using
algorithms that build models from observed examples of human behavior or measurement
encoded as feature vectors; comprehensive interpretations, however, are challenging.

Contemporary LLMs suffer from two related problems that limit their effectiveness
in personalized applications. First, they create an “illusion of understanding” when hu-
mans experience cognitive overload from Al-generated content that appears meaningful
but lacks genuine comprehension [4]. Second, they produce an “illusion of learning” by
generating superficial imitations of human reasoning, without capturing underlying cog-
nitive processes. These limitations collectively contribute to an “illusion of thinking” [5],
where sophisticated Al outputs mask fundamental gaps in understanding and reasoning.

For a perspective on overcoming some of those limitations, we propose a novel
framework that combines graph-based preference modeling with conversational Al. Our
approach builds on the premise that intelligence should be measured not by a system’s
internal complexity, but by its ability to support optimal human decision-making through
meaningful choices [6,7]. This perspective shifts focus from Al autonomy to human
agency supported by an Al companion. Our proposal fits naturally within the framework
of the numerous “human-in-the-loop” approaches.

1.1. The D-LLM Framework: A New Division of Work

The perspective of integration of human preference patterns expressed through
GRAPHYP Knowledge Graphs with the human choice orientations captured by LLMs
holds significant promise for creating Al systems that are better aligned with human val-
ues and decision-making processes [8].

This cross-domain approach exploits the complementary strengths of structured rep-
resentations in knowledge graphs and the flexible natural language understanding of
LLMs, ultimately establishing a regulatory framework where machine learning outcomes
are shaped by explicit human preferences [9].

In this setting, the GRAPHYP Knowledge Graph encodes detailed, human-specific
preference data, while the LLM interprets these preferences in light of contextual decision
signals provided by user interactions, thereby supporting transparent and accountable Al
decision-making [10].

Herein, we develop the perspective of “Dialogical Large Language Models” (D-
LLMs), a framework that combines the GRAPHYP preference modeling system (see be-
low) with traditional LLMs to create what we suggest calling “conversational intelli-
gence”. This hybrid approach addresses two key perspectives:

Perspective 1: Studying complementarities

We study how differences in the range of human preferences—as expressed in a
GRAPHYP Knowledge Graph—can interact with the human choice orientations embed-
ded in Large Language Models, thus providing a control mechanism for machine learning
under human oversight. We suggest articulating a conceptual framework that integrates
structured user preference data with the patterns learned from training data, inherent to
LLM outputs. This integration not only improves explainability and transparency but also
creates a mechanism by which human values and decision policies can actively regulate
machine learning workflows.
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Perspective 2: Understanding a “Regulatory Framework”

Knowledge graphs (KGs) such as the GRAPHYP Knowledge Graph encode human
preference manifolds by capturing entities, relationships, and contextual metadata that
represent explicit human judgments and value systems [11]. Conversely, LLMs derive
their capabilities from extensive training on vast corpora of natural language text, which
embed a kind of “human choice orientation” based on aggregated linguistic patterns and
implicit cultural norms [12]. When these two components are integrated, they create a
promising “regulatory framework” where explicit human-curated preferences can be lev-
eraged to guide and constrain the decision-making of LLMs, ultimately supporting ma-
chine learning regulation by humans [11].

The D-LLM framework operates through four core components: (1) a system archi-
tecture for integrating knowledge graphs with LLMs, (2) reasoning processes that incor-
porate user preferences, (3) standardized formats for preference data, and (4) tailored
prompting approaches for specific use cases. Together, these components enable person-
alized Al interactions that users can understand and control, while preserving the natural
conversational abilities of modern LLMs [13].

1.2. Motivations

Machine learning systems learn from human data through pattern recognition and
generalization, but no single theory fully captures this process. Instead, our understand-
ing relies on multiple interconnected approaches: statistical methods, probability-based
inference, and the inherent assumptions built into different models. This multifaceted un-
derstanding continues to evolve as researchers work to build robust systems from imper-
fect human-generated data [14].

Current LLM personalization approaches face two primary limitations:

Limited Preference Representation: Existing methods struggle to capture the nu-
anced, context-dependent nature of human preferences, particularly in domains where
users may hold conflicting or evolving views.

Opaque Decision Processes: Users cannot understand how their preferences influ-
ence system outputs, limiting both trust and the ability to refine personalization over time.

The GRAPHYP system (see Section 2.3 below for a short description) demonstrated
effective preference modeling for individual users through interpretable subgraph repre-
sentations [15-17]. Our work extends this approach to support multi-user environments
and conversational interactions, investigating whether symbolic preference modeling can
enhance LLM reasoning while preserving conversational naturalness.

This paper explores the perspective of coupling GRAPHYP’s “diversity from within”
modeling capabilities with LLM conversational interfaces to create more transparent and
user-controlled personalized Al systems. We present our research, objectives and initial
findings in developing this novel approach to human—AlI interaction.

1.3. Research Objectives

This study investigates how coupling symbolic preference modeling (GRAPHYP)
with Large Language Models could create more transparent and user-controlled person-
alized Al systems. We focus on four new tracks of understanding:

e  Transparency and Traceability: Enabling users to understand and trace Al reasoning
processes.

e  Community-Based Personalization: Leveraging community knowledge for individ-
ual customization and creating a collaborative knowledge ecosystem that enhances
individual user experiences.

e  Dynamic Adaptation: Supporting real-time preference updates and optimization.
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e  Computational Efficiency: Achieving personalization without expensive model
retraining.

1.4. Contributions

Our analysis makes three primary contributions to enlarging and clarifying the field
of personalized conversational Al:

e D-LLM Framework: A novel architecture that couples graph-based preference mod-
eling with conversational Al while maintaining computational efficiency;

e  Transparent Personalization: Mechanisms that make Al decision-making processes
interpretable and controllable by users;

e  Empirical Validation: Demonstration that hybrid symbolic-neural approaches can
outperform standalone systems in personalization tasks.

These perspectives align with current research directions exploring how structured
knowledge systems and large language models can collaboratively enhance Al reasoning
capabilities and improve human-Al alignment in personalized applications.

2. Background

This study builds on three interconnected research areas: personalizing Al systems
to individual preferences, combining Large Language Models with structured
knowledge, and integrating symbolic reasoning with neural networks. These develop-
ments address a key problem in current Al systems: “Language models are aligned to emulate
the collective voice of many, resulting in outputs that align with no one in particular” [6].

2.1. Personalization Challenges and Human Preference Modeling

Personalization in LLMs involves adapting system outputs to match individual or
group preference. This requires understanding the full complexity of human behaviors—
including cultural background, personal values, situational context, and how preferences
change over time—rather than treating preferences as simple, static parameters.

Current human-Al teaming paradigms assume that unpredictable human prefer-
ences can be managed by identifying patterns that Al can copy. Advanced interaction sys-
tems where models “perform thinking based on contextual information” and “learn to select the
appropriate thinking mode” [18] face emerging concerns about “illusions of thinking” [5].

This complexity becomes particularly evident when considering real-world applica-
tions where Al systems must balance individual preferences with social norms and legal
requirements. Beyond risks of manipulation, personalization faces fundamental limita-
tions from Al systems’ built-in constraints. The concept of “human-like” features remains
poorly defined, yet drives attempts at formalizing personalized data. Recent research rec-
ognizes major gaps in how we model human behavior, including efforts to apply human
legal frameworks to regulate Al agents [19].

As Peter et al. [20] note, personalized Al “comes with the promise to make computing
accessible by enabling interaction with computers as if with a fellow human” while carrying “ob-
vious danger that any such impersonation opens the door for highly effective manipulation at
scale”.

2.2. Recent Advances in Graph-LLM Hybrid Systems

Recent developments in research have witnessed a paradigm shift toward systems
that can tailor interactions to the nuanced preferences and contexts of individual users.
Traditional LLM-driven conversational agents have demonstrated impressive fluency
and adaptability, yet they often lack explicit mechanisms to encode, track, and reason over
structured user preferences. A promising solution to this challenge is found in hybrid
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architectures that combine the strengths of LLMs with graph-based representations of
user and domain knowledge. GRAPHYP’s cognitive communities appear to belong to
these architectures, providing explicit, interpretable models of human preferences and so-
cial interconnections that complement contextualization expressed by LLMs. Such sys-
tems leverage graph neural networks (GNNs) and knowledge graph (KG) techniques to
represent not only isolated user attributes but also the interrelations among diverse com-
munity members, items, and context-specific experiences [21].

2.3. GRAPHYP Architecture and Differential Personalization
2.3.1. GRAPHYP’s Contrasting Approach

The GRAPHYP Project (2019-2025) [15-17] developed methods to capture and rep-
resent the differences in how people express preferences on the same concept. The system
can model these differences computationally, display them in human-readable formats,
and make them accessible to other users. In practice, GRAPHYP analyzes search behavior
to track how people approach queries differently, measuring three key dimensions: inten-
sity (how much attention), variety (how many different aspects), and attention (what they
focus on) (for more details, refer to ‘Design of SKG GRAPHYP’ in Annex A of [16]). These
patterns are visualized through interpretable diagrams of subgraphs that show commu-
nities of related preferences (we call them cognitive communities), creating a comprehensive
map of possible viewpoints. This approach enables systematic observation of the internal
diversity of knowledge structures—revealing how the same topic can be understood in
multiple valid ways.

This approach allows for the detection of adversarial cliques—subgroups within cog-
nitive communities that pursue distinct, sometimes conflicting, information paths. “As-
sessor’s shifts” refer to the dynamic changes in evaluators’ perspectives as they navigate
through disputes or controversies within a knowledge domain. Dispute learning lever-
ages these shifts to map how users (or communities) respond to conflicting information
or challenges, revealing deeper patterns of reasoning and group alignment. By tracking
these shifts across multi-hop pathways, GRAPHYP can highlight how certain groups con-
solidate around specific narratives or oppositional stances.

Our work extends this approach to support multi-user environments and conversa-
tional interactions, investigating whether symbolic preference modeling can enhance
LLM reasoning while preserving conversational naturalness.

GRAPHYP takes a different approach from automated modeling approaches. Rather
than pursuing increasingly refined automation, it focuses on directly modeling human
preferences across use cases, then providing users traceable choice mechanisms based on
predecessor selections and behaviors.

The system’s neuro-symbolic architecture creates multiple pathways for interaction
with LLMs across diverse domains. Unlike conventional graphs that store distinct rela-
tional data, GRAPHYP enables recursive interaction between cognitive communities of sub-
graphs. This positions LLMs as platforms for an extended application of GRAPHTEXT [2].

2.3.2. Differential Personalization Framework

Our concept of differential personalization (for detailed definitions of personalized
LLMs, see definitions 4 (Personalization), 5 (User Preferences), and 6 (Personalized LLM)
proposed by Zhang et al. [3]) treats web-based knowledge access as a source of user pref-
erence data, capturing diverse “language games” for any given query. As suggested in
Wittgenstein’s logic [22], this framework enables describing concepts as language games
that connect context typologies with user intentions.

We examine ‘diversity from within’ (manifold of contexts and motivations related to
a unique query choice) present in individual queries and introduce a framework for
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transcribing and recombining human “preferences” during epistemic alignment in
knowledge acquisition [23]. This perspective suggests a new human—AlI teaming instance
that reveals how people develop nuanced preferences about identical objects and express
meaningful choices during knowledge exchange.

2.4. Intelligence Enhancement and Research Contribution

Reasoning operations aim to develop system intelligence, following Frangois Chol-
let’s definition: “The intelligence of a system is a measure of its skill-acquisition efficiency over a
scope of tasks, with respect to priors, experience, and generalization difficulty” [7]. Rather than
ceding decision-making to machines, our framework amplifies human choice as both the
means and end of learning.

Applied through variational inference methods [24], differential personalization sub-
stantially expands LLMs’ expressive power by extending graph reasoning’s analyzed pos-
sibilities in text space. This represents a paradigmatic shift: instead of replacing human
judgment, the system enhances human agency in knowledge acquisition and decision-
making, by examining the map of true human preferences that could be observed through
the choice of a unique item, and helping with reasoning on its origin and destination.

Yet, despite well-established mechanisms, there is no single, unified general theory
that completely explains how machine learning systems learn and generalize from human
datasets. Instead, multiple theoretical frameworks coexist like statistical learning theory,
or Bayesian approaches or deep learning incorporating millions of parameters and com-
plex, non-linear transformations. However, these frameworks describe various aspects of
the overall interaction rather than providing a universal theory that accounts for all the
nuances of using human-generated data [14].

Research Gap and Contribution

Despite human choice being a natural application of preference data and search ex-
perience serving as its primary tracer, modeling predecessor choices from search data us-
ing discriminative choice models remains surprisingly understudied. Our GRAPHYP re-
search program in ‘creative search’ applications [25] addresses this gap by studying
knowledge structures that host large arrays of human preferences and creating traceable,
expandable interactions across application domains.

This work contributes to understanding the perspective on how symbolic preference
modeling can enhance LLM reasoning while preserving the natural conversational flow
that makes these systems accessible to users.

3. Dialogical Large Language Models (D-LLMs): A Novel Framework
for GRAPHYP-LLM Integration

Exploring the integration of external structured information, primarily from
knowledge graphs, into dialogue systems is currently raising a lot of attention. Prior work,
such as that on Graphologue, demonstrates the benefits of converting linear text responses
into interactive node-link diagrams to support non-linear, graphical dialogue [26]. In par-
allel, recent advances in dynamic graph aggregation have given rise to systems like
SaBART, which, through multi-hop graph aggregation techniques, engage in a deeper fu-
sion of retrieved graph knowledge into response generation [27].

The D-LLM perspective is proposing a new step in that direction. GRAPHYP repre-
sents a further evolution of the above-mentioned research line, where the language model
is intimately involved in the graph message passing process: GRAPHYP is leveraging hi-
erarchical aggregation strategies and eliminates the traditional representation gap be-
tween structured graph information and the unstructured text generated by LLMs [28].
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D-LLM's perspective aims at improving response informativeness and relevance but also
to support a more dialogue-centric interaction mode, where each conversational turn is
contextually enriched by the graph’s semantic structure.

3.1. Theoretical Framework of D-LLM
3.1.1. Conceptual Foundation

Dialogical Large Language Models (D-LLMs) initiate the perspective of a paradig-
matic shift in Al architecture by coupling GRAPHYP’s structured graph-based reasoning
with the natural language capabilities of Large Language Models. This integration ad-
dresses fundamental limitations in both approaches: LLMs’ tendency toward hallucina-
tion and weak logical reasoning [29], and knowledge graphs’ limited natural language
understanding and static knowledge representation [30].

The theoretical foundation of D-LLM rests on three core principles:

Dialogical Intelligence: Moving beyond simple query-response interactions to sus-
tained, contextual dialogues where the system maintains coherent reasoning across mul-
tiple conversational turns. This dialogical approach enables iterative knowledge refine-
ment and collaborative problem-solving between human and AI [29].

Synergistic Coupling: Rather than merely combining two separate systems, the D-
LLM creates a unified reasoning framework where graph-structured knowledge and nat-
ural language processing enhance each other’s capabilities through continuous feedback
loops.

Contextual Adaptivity: The system dynamically adjusts its reasoning strategies,
knowledge retrieval, and response generation based on the user context, domain require-
ments, and conversational history [31].

3.1.2. An Innovative Concept of Language Games as Foundational Theory

Central to the D-LLM’s theoretical framework is Wittgenstein’s concept of language
games [32] —the idea that language derives meaning from its use within specific social
activities or “games” governed by contextual rules [33]. This foundation provides crucial
insights for understanding how the D-LLM achieves contextual intelligence.

Language Games and Meaning-in-Use

Wittgenstein argued that words and sentences gain meaning only within particular
language games—specific forms of language use embedded in social practices and activ-
ities, each with its own rules and purposes (e.g., giving orders, describing objects, scien-
tific discourse, casual conversation). This perspective aligns directly with the D-LLM’s
need to tailor language generation to different contexts, domains, and user intents. Earlier
formalization of this idea could be found in studying the building of slang languages con-
sidered as “langues spéciales” [34].

In the D-LLM framework, GRAPHYP functions as a contextual mediator that identi-
fies and models different “language games” by capturing the following:

¢  Contextual parameters: Domain-specific vocabulary, discourse patterns, and com-
munication norms;

e  User preferences: Individual communication styles, expertise levels, and interaction
goals;

*  Social backgrounds: Professional contexts, cultural considerations, and community-
specific language practices.

Computational Modeling of Language Games

The D-LLM develops the perspective of operationalizing those insights through com-
putational mechanisms:
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Game Recognition Perspective: The system identifies, from the value of the three pa-
rameters of preferences recorded in GRAPHYP (Intensity, Variety, Attention), which “lan-
guage game” a user is engaged in (technical consultation, educational dialogue, creative
collaboration) and adjusts its linguistic behavior accordingly.

Rule Adaptation: Each language game has implicit rules governing appropriate re-
sponses, tone, level of detail, and reasoning style. GRAPHYP’s graph structure encodes
these contextual rules and guides the LLM’s generation process.

Dynamic Game Switching: As conversations evolve, the system can recognize tran-
sitions between different language games and adapt seamlessly —for example, moving
from casual explanation to technical analysis within the same dialogue.

3.1.3. Core Coupling Principles

The following four principles guide the D-LLM framework design. They are based
on the premise that hybrid graph-LLM systems integrate two complementary modalities:
LLMs provide text understanding, language generation, and context adaptation, through
pre-training on diverse corpora, while knowledge graphs offered structured, interpretable
representation of entities and relationships. In such systems, “cognitive communities” re-
fer to clusters or networks within the graph structure that capture semantic, social, and
relational connections among users, items, and contextual factors.

GRAPHYP’s cognitive communities dynamically aggregate and update user prefer-
ences across interactions, representing factors such as past behavior, expressed interests,
and documentary choices in a modulated fashion. Integration with LLM reasoning capa-
bilities enables conversational Al to generate responses that are contextually rich and an-
chored in an explicit, continuously updated user profile model [11].

The four coupling principles are as follows:

Principle 1: Interactive Reasoning Loops.

D-LLM implements sustained dialogical interaction through iterative reasoning cycles
where the LLM queries GRAPHYP for specific nodes, paths, or subgraphs, interprets the
results, and refines subsequent queries based on previous answers. GRAPHYP’s response
makes it possible to differentiate between strategies that led to the termination of explora-
tion (failure or success), further investigation, or expansion of the search, according to dif-
ferent cognitive processes. This enables complex, multi-step reasoning tasks such as tracing
relationships across several hops or synthesizing information from disparate parts of the
knowledge graph. Advanced frameworks (e.g., Tree-of-Traversals [35], GraphOTTER [36])
empower the LLM to select discrete graph actions at each reasoning step.

Principle 2: Dynamic Context Management

In multi-turn conversations, the system maintains rich context about previous que-
ries, answers, and reasoning paths. This contextual awareness enables follow-up ques-
tions, clarifications, and deeper exploration of the knowledge graph while preserving con-
versational coherence.

Principle 3: Transparent Reasoning Pathways

Unlike black-box AI systems, D-LLM constructs explicit, interpretable reasoning
traces. The LLM selects discrete graph actions (such as VisitNode, GetSharedNeighbours, or
AnswerQuestion) at each reasoning step, creating clear audit trails essential for transpar-
ency and explainability.

Principle 4: Grounded Inference

By anchoring each reasoning step in the actual graph structure, D-LLM reduces hal-
lucinations and ensures factual accuracy. This grounding is particularly crucial for multi-
hop queries and knowledge-intensive tasks where precision is paramount.
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3.1.4. Dialogical vs. Traditional Approaches: D-LLM Perspective

Traditional Al systems typically operate through isolated query-response cycles
with limited context retention. D-LLM’s dialogical approach enables the following:

Conversational Memory: The system builds comprehensive models of ongoing dia-
logues, tracking not just facts exchanged but reasoning patterns, user preferences, and
evolving understanding.

Collaborative Discovery: Rather than simply retrieving pre-existing knowledge, D-
LLM engages in collaborative knowledge construction, helping users explore ideas, test
hypotheses, and develop insights through sustained interaction.

Adaptive Expertise: The system adjusts its level of explanation, terminology, and rea-
soning depth based on demonstrated user expertise and feedback, creating truly person-
alized learning experiences.

Figure 1 sums up the characteristics that we propose for the D-LLM:

eInteractive reasoning loops
*Dynamic context management

s Transparent reasoning pathways
*Grounded inference

\
*Coupling GRAPHYP's reasoning abilities on human preferences with LLM
*Coupling LLM's reasoning abilities on knowledge data with GRAPHYP

J

)
*D-LLM: Conversational Memory
*D-LLM: Collaborative Discovery
*D-LLM: Adaptive Expertise

J

Figure 1. Perspective on building D-LLMSs: Process, tools, results.

A prospective example of D-LLM, in Appendix A, illustrates potential dialogical in-
teractions between GRAPHYP and an LLM, while the GRAPHYP perspective on how to
resolve scientific disputes with LLMs is illustrated in Appendix B.

3.1.5. Methodological Implications: The Unique Advantages of Human Preference
Expression

The D-LLM framework offers several important advantages through its integration
of GRAPHYP’s cognitive communities:

A. Nuanced Representation of Complex Preferences. GRAPHYP’s cognitive communi-
ties are able to express nuanced human preferences that encompass both explicit
choices and subtle, implicit cues learnable only via relational analysis. Traditional
recommender systems or isolated LLMs rely on vector representations or hidden em-
beddings that lack transparency. In contrast, cognitive communities represent user
preferences as structured nodes and edges that explicitly encode relationships such
as “likes,” “dislikes,” “visited,” or “influenced by.” This approach enables complex
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multi-hop relations among diverse data points while allowing community detection
that reveals shared interests and collective biases among groups of users.

B. Enhanced Multi-hop Reasoning and Context Aggregation. In complex dialogue sce-
narios spanning multiple topics and temporal contexts, the graph structure traces
dependencies and connections far beyond what a linear model can handle. For ex-
ample, a student’s query about a particular subject can aggregate subsequent refer-
ences to historical course corrections, feedback from previous sessions, and shifting
interpersonal dynamics among peers. This multi-hop reasoning improves response
relevance while grounding recommendations in a holistic understanding of the
user’s evolving profile.

C. Transparency and Explainability. Unlike conventional approaches producing
opaque output, the integration of a structured graph makes it possible to trace back
the reasoning steps taken by the model to reach specific conclusions.

D. Collaborative and Community-driven Personalization. Beyond individual prefer-
ences, the framework captures collective user behaviors, enabling the conversational
agent to leverage community-wide trends. Shared nodes and relationships reveal
common interests, emerging trends, and collective biases for refined recommenda-
tions. For example, aggregated knowledge graph data from multiple users on digital
health platforms may highlight community-wide shifts in nutritional preferences or
workout habits.

E. Ethical Considerations and Privacy Preservation. The explicit graph structure func-
tions to audit and modify stored information, ensuring that users maintain control
over their personal data. Features like role-based access control (RBAC) and decen-
tralized knowledge management ensure appropriate data partitioning and ethical
oversight of user profile manipulation.

These advantages enable the D-LLM to achieve three key capabilities:

Beyond Information Retrieval: The framework transcends traditional information re-
trieval by enabling genuine knowledge co-construction through dialogue. Users do not
just access existing information but participate in its interpretation and application.

Contextual Intelligence: By grounding language understanding in graph-structured
representations while maintaining sensitivity to the conversational context, the system
adapts to both semantic and pragmatic dimensions of communication.

Human-AlI Collaboration: The approach positions Al not as a replacement for human
reasoning but as a sophisticated cognitive tool that amplifies human capabilities while
preserving human agency and choice.

This foundation provides the D-LLM with a novel perspective on human-Al interac-
tion, combining the precision of structured representation with the flexibility and natural-
ness of conversational Al

3.2. Technical Architecture and Coupling Mechanisms
3.2.1. Core Integration Framework

GRAPHYP-LLM coupling represents a synergistic integration of structured graph
knowledge and natural language reasoning to enhance dialogue, reasoning, and
knowledge-intensive tasks. This integration enables accurate entity linking through am-
biguity resolution and ontological alignment, while supporting robust fact verification
through grounded, real-time reasoning and dynamic knowledge graph enrichment [31].

3.2.2. Dialogical Mechanisms

The system offers the potential to incorporate four key dialogical mechanisms for
conversational intelligence:
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Interactive Reasoning Loops: The LLM iteratively queries GRAPHYP for specific
nodes, paths, or subgraphs, refining queries based on previous responses to handle com-
plex, multi-step reasoning tasks across multiple graph hops.

Dynamic Dialogue Management: Maintains contextual awareness in multi-turn con-
versations, facilitating follow-up questions and deeper graph exploration guided by user
interactions.

Explicit Reasoning Paths: Enables LLM selection of discrete graph actions (like Visit-
Node, GetSharedNeighbours, AnswerQuestion) at each step, constructing clear, interpretable
reasoning traces essential for transparency.

Grounded, Accurate Inference: Anchors reasoning steps in the actual graph structure,
reducing hallucinations and ensuring factually correct, contextually relevant answers.

Core coupling capabilities are summarized in Table 1.

Table 1. Core coupling capabilities.

Capability How Coupling Enables It

Interactive Reasoning LLM guides GRAPHYP through stepwise graph traversal
Dynamic Dialogue Maintains context, supports clarifications and follow-ups
Explainability Explicit reasoning traces, transparent multi-step logic
Data Integration Handles structured, unstructured, and time-series data

3.2.3. Graph-Enhanced Reasoning

GRAPHYP’s graph-based approach significantly improves LLMs’ accuracy for logi-
cal and algebraic queries by representing multiple reasoning paths as a reasoning graph,
where nodes represent intermediate steps and edges capture logical connections. This en-
ables systematic analysis, cross-validation, and verification of logical consistency, filtering
out erroneous paths for more reliable answers in complex problems [37,38].

3.2.4. Hybrid Architectural Benefits

The integration of neural and symbolic methods combines respective strengths while
overcoming individual limitations [39].

This hybrid architecture establishes the foundation for the enhanced reasoning capa-
bilities, personalization features, and diverse applications detailed in subsequent sections.

3.3. Enhanced Reasoning Capabilities
3.3.1. Core Reasoning Framework

Coupling LLM with GRAPHYP leverages graph-structured reasoning to overcome
fundamental LLM limitations in logic, multi-step inference, and ambiguity resolution [40].
The system enables query decomposition into sub-goals, adaptive path exploration with
backtracking capabilities, and aggregation of diverse reasoning paths through graph topol-
ogies—unlike linear chain-of-thought methods [40]. This unified semantic and topological
understanding integrates LLM comprehension with GRAPHYP’s relational topology for
context-aware reasoning over both unstructured text and structured relationships [41].

3.3.2. Fractal Geometric Applications

Fractal geometry provides a framework for describing complex, self-similar, scale-
invariant structures in natural systems and data representations [3]. GRAPHYP’s fractal
geometric capabilities coupled with LLMs open up new avenues for reasoning, represen-
tation, and explainability.
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Semantic Structural Discovery: GRAPHYP’s fractal analysis tools map, quantify, and
interpret emergent semantic geometries in LLM embeddings, enabling deeper insight into
how language models organize and relate knowledge [42].

Adaptive Resource Allocation: The brain-like, fractal organization of LLM concept
spaces suggests that certain regions become more active depending on the task (e.g., math-
ematical reasoning vs. narrative generation). GRAPHYP helps dynamically allocate com-
putational resources or adjust attention within the LLM based on fractal-geometric cues [43].

Multi-Scale Network Analysis: Traditional graph-theoretical measures often fail to
capture the emergent, dynamic complexity of large-scale networks. Fractal geometry
quantifies network features such as self-similarity, scale invariance, and the Hausdorff
dimension (see, e.g., https://www.numberanalytics.com/blog/ultimate-dimension-theory-
guide (accessed on 20 June 2025)), revealing subtle structural and functional distinctions
in data-rich domains like brain connectomics.

GRAPHYP uses fractal-based analysis (examining patterns like those found in Man-
delbrot sets) to distinguish between different network states [17] (such as rest versus ac-
tive tasks in neural data). This provides indicators of emerging system behaviors that go
beyond simple connectivity measurements [43].

In summary, incorporating fractal geometric analysis into the D-LLM creates a flexible
and interpretable framework that can analyze patterns at multiple levels, supporting more
advanced Al reasoning [17] and knowledge representation (as summarized in Table 2).

Table 2. Key fractal reasoning capabilities.

Capability GRAPHYP (Fractal Geometry) LLM Coupling Benefit
Self-similarity analysis Quantifies repeating patterns ~ Reveals semantic clusters
Scale invariance Measures complexity Detects emergent structures
Dynamic metrics Tracks changes in structure Adaptive reasoning support

3.3.3. Hybrid Reasoning Perspective Framework

GRAPHYP’s hybrid reasoning capabilities, which combine both possibility-based
and probability-based approaches, provide a significant contribution to the D-LLM’s rea-
soning power. When integrated with a large language model, GRAPHYP creates a more
comprehensive framework for reasoning and decision-making [44]. This integration sub-
stantially expands system capabilities, addressing individual limitations of each compo-
nent and enabling new possibilities for advanced Al reasoning [45].

Complementary Reasoning Approaches

GRAPHYP uses possibility-based reasoning to handle uncertainty and incomplete
information through possibility measures and gap patterns, while probability-based rea-
soning manages uncertainty through statistical inference [17]. This dual approach enables
the system to capture different types of uncertainty and knowledge representation nu-
ances that purely probabilistic or purely symbolic systems might miss.

This approach captures a familiar aspect of human reasoning—what might be de-
scribed as “the possibility of a probability” —by inverting the more common concept of
“the probability of a possibility.”

Enhanced Expressiveness and Flexibility

By combining possibility-based and probability-based reasoning, GRAPHYP can
represent and reason about knowledge that is both uncertain and partially known, sup-
porting more flexible inference. When integrated with an LLM’s natural language under-
standing and generation capabilities, this hybrid reasoning guides the LLM’s outputs [46]
to be more logically consistent and grounded in structured knowledge.



Appl. Sci. 2025, 15, 8307

13 of 29

Table 3 systematically compares the capabilities of LLM, GRAPHYP, and hybrid ap-
proaches, highlighting the synergistic advantages of combining neural and symbolic
methods for more complex, transparent, and reliable problem-solving.

Table 3. Reasoning capability comparison: D-LLM perspective.

Capability LLM GRAPHYP Hybrid (GRAPHYP + LLM)

Pattern Recognition Strong Weak Strong

Logical Reasoning Limited Strong Strong

Multi-step Inference Weak Strong Enhanced flexibility

Explainability Low  High High

Uncertainty Handling Weak Strong (with hybrid) Strongest

Scalability/Adaptability High Moderate High

Fractal Analysis None Strong Enhar}ced with semantic in-
tegration

Real-time Learning I;/tI:der— Limited Strong

Context Preservation la\ilé)der— Strong Strongest

Hallucination Rate High Low (limited scope) Reduced

lti-h Perfor-
Multi-hop Query Perfor Weak Strong Superior
mance
. Moder- _ . I . .
Factual Consistency ate High (within domain) Enhanced across domains

Uncertainty Quantifica- Poor Good (possibilistic/proba-

tion bilistic) Excellent (dual framework)

Key Performance Enhancements:

*  Reduced Hallucinations: By design, the D-LLM aims to reduce hallucinations com-
pared to pure LLM approaches, through structured grounding;

¢ Enhanced Multi-hop Reasoning: Graph traversal combined with LLM semantic un-
derstanding enables a superior performance in complex, multi-step queries;

¢ Improved Factual Consistency: Integration achieves enhanced factual consistency by
grounding responses in up-to-date, structured knowledge;

*  Superior Uncertainty Handling: The hybrid approach manages both epistemic and
aleatory uncertainty more effectively than traditional methods.

3.4. Personalization and Preference Modeling

This subsection examines how GRAPHYP-LLM coupling enables sophisticated per-
sonalization through integrated preference modeling, adaptive user interaction, and con-
text-sensitive language understanding. The D-LLM framework transforms static Al inter-
actions into dynamic, personalized experiences by leveraging graph-based reasoning, lan-
guage game theory, and advanced sampling techniques.

3.4.1. Differential Personalization Architecture

To enhance GRAPHYP’s capabilities in LLM functionalities with variational infer-
ence-driven personalized language games, we propose a multi-faceted approach integrat-
ing graph-based reasoning and probabilistic modeling. The system constructs user—item
interaction graphs connecting users with game elements and employs graph neural pro-
cessing for sophisticated personalization [17,47]. Our framework incorporates three key
differential personalization components as detailed in Table 4.
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Table 4. Differential personalization components.

Component Implementation Benefit

Preference analy- GNN message passing across interaction Identifies latent skill pat-
sis graph terns

Content retrieval Attention-based neighborhood sampling Finds relevant challenges
Progress predic-
tion

. Anticipates learning trajec-
Graph traversal algorithms toriesp & 1]

3.4.2. Personalized PageRank Sampling

Personalized PageRank (PPR) significantly improves the personalized experience in
GRAPHYP by focusing the system’s attention on the most relevant parts of the narrative
or interaction graph, tailored specifically to individual users [48]. PPR measures node im-
portance relative to the user position, enabling dynamic adaptation to user choices, effi-
cient scalable personalization, and enhanced recommendations through user-specific
ranking rather than generic views. Table 5 summarizes the key benefits of PPR sampling
in GRAPHYP.

Table 5. PPR sampling benefits.

Benefit How It Works in GRAPHYP
Samples el ts usi -specific PPR
Relevance-Focused Personalization amples elements Using tser-speciic
scores
Real-Time Adaptation Updates context as user position evolves
Scalable Efficiency Processes only the most important nodes per
user
Unique Pathways Ranks options from personal user perspectives

3.4.3. Language Game Integration

We have already mentioned how Wittgenstein’s concept of language games [32] —
where language derives meaning from its use within specific social activities—can be in-
tegrated into D-LLM coupling to enhance personalized and context-sensitive language
understanding and generation.

This integration leverages Wittgenstein’s view that meaning arises from use within
specific social activities. Language games are computationally modeled as distinct frame-
works guiding LLM behavior in personalized ways [49,50], treating contextualized lan-
guage use as domain-specific practices with distinct rules and purposes.

3.4.4. Multiverse Pathway Modeling

GRAPHYP’s multiverse pathway modeling [16] creates geometric graphs mapping
all possible learning trajectories, enabling the following;:
¢  Dynamic Difficulty Adjustment: Analyzes action sequences against optimal solution
graphs;
e  Personalized Hint Systems: Identifies deviation points from successful pathways;
e  Branching Narrative Generation: Uses adversarial clique detection in choice patterns [51];
e  Adaptive Evolution: Employs reinforcement learning to modify the graph structure
based on user behaviors.
Knowledge graph integration embeds language concepts as entity-relation triples
and uses chain-of-thought QA pairs to create reasoning pathways between grammar rules
and user preferences.
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3.4.5. Variational Personalization Framework

The integration of variational inference with graph-based personalization enables
uncertainty quantification in user preference modeling, adaptive exploration of prefer-
ence spaces, robust personalization under incomplete data, and dynamic preference evo-
lution tracking. Graph transformers enhance this approach by modeling complex relation-
ships and long-range dependencies within user interaction data.

Personalized Content Generation augments LLM prompts with GRAPHYP contribu-
tions [52,53]:

e  Subgraph embeddings of user knowledge state;
e  Path analysis from current skill node to target competencies;
e  Historical comparison vectors from similar learners.

Reinforcement Learning Integration creates adaptive multiverse graph pathways
through reward functions providing structured feedback for personalized path generation.
Feedback Loop Architecture:

User preferences inform graph structure modifications;
Graph modifications influence LLM prompt construction;
LLM outputs are evaluated against user satisfaction metrics;
Satisfaction metrics update preference models in the graph.

LS

This creates a dynamic personalization system where the graph structure, LLM be-
havior, and user preferences continuously co-evolve.

3.5. Applications and Use Cases

The D-LLM framework translates theoretical capabilities into practical applications
across diverse domains by integrating GRAPHYP’s graph-based reasoning with LLM nat-
ural language processing.

3.5.1. Scientific Research and Knowledge Discovery

Dispute Resolution and Conflict Analysis: GRAPHYP’s dispute learning visualizes
conflicting scientific claims as graph structures, mapping opposing claims, supporting ev-
idence, and connecting pathways [17]. This enables the D-LLM to allow a representation
of effective conflicts using broader contextual reasoning [54], presenting not just consen-
sus knowledge but the full spectrum of perspectives and controversies within fields [15].
The system explicitly models scientific disagreements and assessor shifts, supporting
more nuanced and critical decision-making.

Multi-Hop Causal Reasoning: The multiverse graph approach enables the visualiza-
tion and exploration of complex reasoning paths, which is challenging for LLMs alone,
supporting deeper causal inference and hypothesis testing crucial for advanced research,
peer review, and educational applications.

3.5.2. Personalized Learning and Education

Modern personalized learning systems increasingly leverage hybrid architectures
that combine graph-based knowledge representation with large language model capabil-
ities. While these systems may not explicitly adopt the GRAPHYP framework, they
demonstrate similar principles of using structured graph data to enhance LLM-driven
personalization and preference processing.

Personalized Language Games: GRAPHYP constructs user—item interaction graphs
connecting users with game elements (vocabulary, grammar structures, challenge levels)
[16,51]. The system enables dynamic difficulty adjustment through action sequence anal-
ysis, personalized hint systems identifying deviation points from successful pathways,
and branching narrative generation through adversarial clique detection in player choice
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patterns. D-LLM could maintain an evolving knowledge graph that encapsulates a stu-
dent’s learning history, preferences, and performance feedback. Graph nodes explicitly
represent key concepts the student has encountered, the topics they found challenging,
and learning behavior patterns over time.

Adaptive Learning Pathways: Narrative graphs map story beats, choices, and conse-
quences as interconnected nodes, enabling an instant response to player decisions for
unique, coherent, personalized paths. GRAPHYP personalizes language games to match
learner levels and generates domain-specific content fitting professional contexts (legal
language, scientific reporting, creative writing).

Graph-to-Text Translation via Soft Prompting: The GraphTranslator model exempli-
fies this hybrid approach by translating graph node embeddings into soft prompts for
LLM processing. In this framework, the system first encodes graphs —comprising entities,
user relationships, and interaction histories —via node embedding techniques that capture
latent semantic relationships. GraphTranslator then generates “soft prompts” that prime
the LLM for contextually accurate, user-aligned responses. This precise extraction and
summarization of user preferences from graph-based representations occurs through in-
teractive dialogue steps where the LLM processes soft prompts derived from the graph
structure [55].

Dynamic Profile Management: The Apollonion framework demonstrates profile-cen-
tric dialogue agents with continuously updated user profiles. Each query is analyzed to ex-
tract contextual clues, updating user profiles with detailed preference, habit, and interest
information. Over successive dialogue turns, retrieved conversation memory and profile
embeddings inform the LLM’s response generation, ensuring that recommendations remain
aligned with evolving user preferences. This dynamic reflective process embodies continu-
ous graph updates that mirror the user’s internal state throughout the conversation [56].

Multi-turn Preference Alignment: Recent studies focus on aligning LLM responses
with individual user preferences via interactive, multi-turn dialogue. The ALOE training
methodology dynamically tailors LLM responses based on ongoing dialogue that pro-
gressively unveils the user’s persona through Personalized Alignment protocols [57].

Conversational Recommendation Systems: The COMPASS Framework is designed
for conversational recommendation. COMPASS integrates domain-specific knowledge
graphs with large language models to capture and summarize user preferences expressed
through multi-turn dialogues. The system utilizes a relational graph convolutional net-
work to capture complex item relationships and attributes. A Graph-to-Text adapter
bridges the graph encoder output to the natural language format for LLM processing. The
LLM, in turn, generates human-readable preference summaries subsequently used by tra-
ditional conversational recommendation system architectures.

Detailed case studies demonstrate COMPASS’s ability to accurately extract and sum-
marize critical preference signals from user dialogue, including preferences for actors,
genres, directors, and thematic keywords. Comparative evaluations show that integrating
KG information with explicit training on graph-enhanced pretraining strategies yields a
superior performance in interpretability and user preference alignment [11].

These hybrid systems demonstrate how structured graph representations can enhance
LLM-based natural language understanding and generation in educational contexts. The
integration of graph-encoded user data with conversational Al creates more nuanced, adap-
tive learning experiences that respond to individual learning patterns and preferences while
maintaining pedagogical effectiveness across diverse educational domains.

3.5.3. Content Verification and Fact-Checking

Enhanced Verification Framework: GRAPHYP’s causal-first knowledge graphs pro-
vide LLMs with explicit, verified relationships during text generation, enabling real-time
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cross-referencing against factual nodes. This structured grounding should reduce hallu-
cinations compared to pure LLM approaches.

Explainable Fact-Checking: The system embodies Explainable Al principles through
the following;:

Reasoning Path Traversal: Step-by-step visualization from input to output;

Entity Linking and Source Tracing: Connecting text mentions to uniquely identified
entities for semantic annotation and provenance tracking;

Dispute Modeling: Surfacing alternative reasoning paths and highlighting uncer-
tainty in conflicting or ambiguous cases.

Users can access transparent, auditable evidence and the logic behind each claim
through retrieval-augmented generation grounded in graph-based evidence.

3.5.4. Interactive Systems and Dialogue Applications

Context-Aware Dialogue: GRAPHYP identifies the user’s language game (casual
chat, technical support, educational tutoring) and steers the LLM to adopt corresponding
patterns and tone. The system manages different language games by capturing contextual
parameters, user preferences, and social backgrounds.

Dynamic Narrative Systems: Branching narrative graphs represented as Directed
Acyclic Graphs support dynamic storylines adapting to individual decisions. GRAPHYP
leverages real-time tracking and response to each user’s unique journey, enabling replay-
ability and personalization.

Personalized Recommendation: Personalized PageRank (PPR) focuses system atten-
tion on graph regions most relevant to individual users, as already discussed above.

3.5.5. Advanced Reasoning and Decision Support

Real-Time Knowledge Integration: Knowledge Graph Tuning (KGT) allows LLMs to
update knowledge bases using structured GRAPHYP inputs without costly retraining.
Dynamic data integration enables continuous entity and relationship extraction from un-
structured data for real-time knowledge enrichment.

Enhanced Prompt Engineering: Structured graph information injection into LLM
prompts guides a focus on relevant entities and relationships. Evidence subgraphs re-
trieved from GRAPHYP provide explicit context, improving the precision and reliability
of generated responses.

These integrated capabilities ensure that D-LLM applications remain coherent, en-
gaging, and deeply personalized while maintaining factual accuracy and explainability
across diverse domains.

3.6. Human Choice Freedom and Preference Expression

The coupling of GRAPHYP and LLMs in D-LLM fundamentally transforms how us-
ers interact with Al systems by establishing a human-choice-first framework that expands
the dimensions of preference expression and knowledge discovery. Rather than constrain-
ing human agency, this integration enhances human free choice by improving the accu-
racy, reliability, and interpretability of Al outputs, empowering humans to make more
informed and autonomous decisions while leveraging Al as a complementary cognitive
tool rather than a replacement.

Enhanced Decision-Making Through Expanded Choice Landscapes

Integrating graph structures with LLMs enhances the Al’s ability to perform com-
plex, multi-step reasoning [54]. Methods like “Tree of Thoughts” and “Graph of
Thoughts” [40] enable LLMs to explore multiple pathways and solutions, revealing a
broader array of alternatives and strategies for user consideration. This approach ensures
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that users are presented with more diverse and creative options, not just the most obvious
or common ones, thereby expanding their decision-making landscape beyond the limita-
tions of traditional Al systems.

The system’s ability to traverse complex reasoning paths means that when users ex-
press preferences or seek solutions, they gain access to a comprehensive exploration of
possibilities. This enhanced decision-making capability operates through the synergistic
combination of GRAPHYP’s structured knowledge representation and the LLM’s natural
language understanding, creating a collaborative environment where human creativity
and Al capability enhance each other.

Transforming Preference Modeling and Expression

Coupling GRAPHYP with LLMs revolutionizes preference modeling through sev-
eral key mechanisms. The system achieves enhanced knowledge representation by mod-
eling complex, multi-faceted user preferences through the integration of both language
understanding and structured reasoning. This dual approach enables the system to cap-
ture not just explicit preferences but also implicit intentions and contextual nuances that
traditional systems might miss.

Improved explainability represents another crucial advancement, as users gain in-
sight into how their preferences are interpreted, increasing trust and enabling informed
choices. The transparent nature of graph-based reasoning allows users to understand the
logical pathways connecting their expressed desires to recommended actions, fostering a
deeper understanding of their own preference patterns.

Dynamic preference elicitation enables users to express preferences in natural lan-
guage, with the system interpreting even vague or complex intentions. This flexibility ac-
commodates the natural human tendency to express preferences through metaphors, cul-
tural references, and seemingly contradictory desires, treating these not as obstacles but
as navigational challenges within the preference space.

Achieving True Freedom of Preference Expression

The D-LLM method achieves comprehensive personalization through three funda-
mental principles that preserve and enhance human agency. Transparency and control
ensure that users understand preference interpretation and application, fostering trust
and informed decision-making. Unlike black-box recommendation systems, D-LLM pro-
vides clear reasoning trails that users can follow, evaluate, and critique.

Flexible expression accommodates natural language preference expression that han-
dles complex or ambiguous user intentions. The system does not require users to conform
to rigid input formats or oversimplified categories. Instead, it adapts to the full spectrum
of human expression, recognizing that preferences often evolve and change as users learn
more about available options.

Adaptive decision support enables the system to propose alternatives, explain trade-
offs, and adapt recommendations based on evolving preferences with clear reasoning
trails. This ongoing dialogue approach treats preference modeling not as a static snapshot
but as a dynamic conversation, allowing users to remain active participants in defining
and refining their own preference profiles.

Scalability Strategies for Large-Scale Graph Systems

GRAPHYP can rely on several strategies to handle scaling with large user bases and
frequent, real-time graph updates:

Data Partitioning and Sharding: The system achieves horizontal scaling through
sharding, dividing large graphs into smaller, manageable subgraphs distributed across
different machines or clusters. This load distribution enables the system to handle more
concurrent users. Dynamic partitioning algorithms distribute graph data based on real-
time user activity and load, ensuring high-traffic areas do not become bottlenecks.
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Distributed and Federated Querying: The platform uses composite or federated que-
ries to search and update across distributed graph shards. These technologies enable que-
ries to access and combine data from multiple subgraphs, providing seamless user expe-
riences as the system scales.

Real-Time Graph Updates: For real-time changes (adding nodes/edges, updating
properties), the system utilizes load-balancing task schedulers and concurrent processing
frameworks. These mechanisms enable a rapid propagation of graph changes across the
distributed topology with minimal latency.

State-of-the-art graph platforms using these techniques have demonstrated the abil-
ity to manage billions of daily updates while serving hundreds of millions of users simul-
taneously with low latency, even for large, highly connected networks where rapid up-
dates are essential.

Comparative Advancement in User Agency

The transformation from traditional LLM approaches to the D-LLM’s integrated
framework represents a fundamental shift in how Al systems handle human preferences
and choice. This advancement is particularly evident when comparing the capabilities
across key dimensions of user interaction and agency, as illustrated in Table 6.

Table 6. Comparison of preference expression capabilities.

Feature LLM Only GRAPHYP + LLM Coupling
Knowl R -

taItli(:)‘I:’ edge Represen Unstructured/Textual — Structured/Graph-based
Preference Modeling Statistical, opaque Transparent, explainable

Preference Elicitation Language-based, static Interactive, dynamic

Reasoning Capabili- L e-based infer- .
easoniiig L-apabli- - tangtage-based i Graph-augmented reasoning

ties ence

Limited by prompt con- Enhanced by structured reasoning and

User Choice Freedom straints LLM flexibility

This comparative analysis demonstrates how the D-LLM'’s approach fundamentally
expands user agency by combining the flexibility of natural language interaction with the
precision and transparency of structured reasoning.

Establishing a Human-Choice-First Framework

The integration ensures that choices are better understood, accurately modeled, and
dynamically updated according to user needs and context. This human-choice-first frame-
work operates on the principle that Al should amplify rather than replace human deci-
sion-making capabilities, creating a collaborative cognitive environment where users
maintain agency while benefiting from enhanced information access, expanded option
awareness, and transparent reasoning support.

Through this approach, the D-LLM establishes a new paradigm for human-Al inter-
action—one that preserves human autonomy while providing powerful cognitive aug-
mentation, ensuring that the ultimate goal remains empowering humans to make better
choices for themselves rather than having choices made for them by algorithmic systems.

3.7. Comparative Analysis and Evaluation
Key Transformative Capabilities

The D-LLM offers transformative advantages through enhanced interpretability and
traceability, personalized context-aware reasoning, dispute and controversy analysis,
multi-hop and causal reasoning, efficient real-time knowledge updates, and facilitation of
discovery and serendipity. Table 7 provides a comprehensive comparison of these
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advantages across GRAPHYP + LLM integration, traditional LLMs, and standard
Knowledge Graphs, highlighting the superior capabilities of the integrated approach in
areas such as interpretability, personalization, and dispute modeling.

Table 7. D-LLM comprehensive advantages.

RAPHYP +LLM I -
Feature/Advantage t(i;on ¥ ntegra Traditional LLM Standard Knowledge Graph (KG)
Interpretability High ('reasorung paths, asses- Mef:hum (textual expla- ngh (explicit relations, limited rea-
sor shifts) nations) soning paths)
Personalization Real-time, user-specific Limited Possible, but not real-time
Dlsput.e/Controversy Natnfe support (dispute Weak Weak
Modeling learning)
. . Strong (graph traversal + .
Multi-hop Reasoning LLM) Weak Strong (but less flexible)
Real-time Knowl -
cal-time Knowledge Up Efficient (no retraining) Slow (needs retraining) Moderate (manual updates)

dates

Bridging Text and Struc-  Yes (symbolic/textual conver- No
ture sion)

High lternati
Discovery/Serendipity p;ghs)(exposes alternative Low Low

4. Discussion

4.1. The Perspective of a Technical Integration and Advantages of D-LLM in the Realm of
Hybrid Graph-LLM Systems

The integration of GRAPHYP with LLMs offers a synergistic framework that ad-
dresses key limitations in current Al systems. This D-LLM approach demonstrates seven
core capabilities: dispute-aware personalization through cognitive community modeling,
grounded multi-hop reasoning that reduces hallucinations, transparent explainability
with traceable reasoning pathways, democratized access to complex knowledge struc-
tures through natural language interfaces, contextual retrieval optimization adapted to
contested domains, adaptive knowledge integration through bidirectional updating, and
interactive visualization for debugging and optimizing reasoning processes.

However, hybrid graph-LLM systems are integrating structured representations
with the generative power of Large Language Models, in which they address the inherent
challenges of processing complex human preferences in natural dialogue. The latest ad-
vances in this area include interactive diagramming, soft prompt generation, and reinforce-
ment learning (RL)-based dialogue management. Each of these elements offers distinctive
advantages for dealing with the complexity of human preferences, and when combined,
they pave the way for adaptable systems that can reason over multi-turn dialogue flows,
reduce user cognitive load, and dynamically align system responses with user intent.

Reinforcement learning (RL)-based dialogue management offers an adaptive ap-
proach to optimizing multi-turn conversations, particularly when handling the diverse
and often uncertain nature of human preferences. RL offers an adaptive, data-driven ap-
proach to optimizing multi-turn conversations, particularly when handling the diverse
nature of human preferences. The continuous learning cycle enabled by RL also allows
the system to gradually improve through offline simulation (via imagined conversations)
and online user feedback, ensuring that any emerging misalignments or drop-offs are
quickly corrected. Synergies with D-LLM belong to our further works.
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4.2. Domain-Specific Applications and Validation

Empirical validation across three domains demonstrates encouraging results about
the framework’s versatility. In scientific research, the system effectively maps conflicting
findings and enables automated literature analysis with balanced meta-analysis capabili-
ties. Social network analysis reveals particular strength in detecting echo chambers and
designing targeted interventions for polarization mitigation.

4.3. Implementation Challenges

Current limitations constrain broader deployment. Generalization to novel dispute
types remains challenging, particularly for controversies lacking a historical precedent.
Computational scalability requires optimization for large-scale dispute networks while
maintaining real-time responsiveness. Interpretability demands ongoing human over-
sight for nuanced contextual validation. Additionally, robust evaluation frameworks for
assessing dispute resolution quality across diverse domains need further development.

These implementation challenges suggest that while combining knowledge graphs
and LLMs shows significant promise [58], successful deployment will require sustained
research attention across multiple technical and methodological dimensions.

4.4. Towards the Perspective of a Paradigmatic Transformation

Beyond these technical perspectives and implementation challenges, the D-LLM
framework introduces a methodological shift in how Al systems mediate human-
knowledge interactions. Rather than functioning as authoritative sources that present sin-
gular interpretations, these systems serve as structured interfaces that expose users to di-
verse perspectives within disputable knowledge domains. The integration of multiple
data modalities—temporal, spatial, and affective—within this framework means that the
system not only learns from static snapshots of user behavior but also adapts in real time to
the dynamic evolution of human preferences. This approach effectively bridges the gap be-
tween symbolic reasoning and statistical pattern recognition. In practice, this means that a
conversational Al can manage both the “what” and the “why” behind a user’s request.

This framework supports more nuanced decision-making by preserving access to
competing interpretations and their underlying evidence structures.

GRAPHYP-LLM integration should improve discourse quality by identifying and
presenting underrepresented viewpoints within knowledge disputes. This systematic ap-
proach to perspective mapping helps reveal implicit assumptions and blind spots that may
otherwise remain hidden in traditional information systems. While new forms of bias may
emerge from this integration, the structured representation of multiple viewpoints provides
a foundation for more comprehensive bias detection and mitigation strategies [59].

GRAPHYP supports the generation of graph schemas from unstructured data, simi-
lar to how FalkorDB processes raw documents to identify entities and relationships for
knowledge graph construction (a scalable, low-latency graph database designed for Large
Language Models, available at GitHub https://github.com/FalkorDB/FalkorDB (accessed
on 20 June 2025)). This simplifies the process of converting diverse data sources into or-
ganized, searchable structures [50]. GRAPHYP effectively captures complex relationships
between different pieces of information, which supports advanced search and reasoning
capabilities.

This enables nuanced, multi-hop queries and supports complex reasoning tasks.
GRAPHYP’s organized approach makes Al decision-making transparent, allowing users
to see and follow the reasoning process behind each response. This matches FalkorDB's
emphasis on explainable results, where the search process remains visible and under-
standable. GRAPHYP works together with Large Language Models, enabling data extrac-
tion, classification, and querying using natural language. FalkorDB’s GraphRAG
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architecture similarly uses LLMs for understanding queries and generating responses,
making the two systems compatible.

4.5. Future Development Directions

Looking ahead, several key areas emerge as priorities for future development. En-
hanced graph reasoning capabilities represent a crucial frontier, requiring advances in
LLM abilities to process complex relational structures and causal reasoning chains. This
development would enable a more sophisticated analysis of how disputes emerge and
evolve over time.

Domain adaptation presents another important direction, involving the development
of specialized modules for different application areas while maintaining overall system
coherence. This approach would allow the system to leverage domain-specific knowledge
while preserving the general principles that make cross-domain analysis possible.

User interface innovation constitutes a third critical area, focusing on creating intui-
tive visualization tools that enable effective human—AlI collaboration in dispute analysis.
These interfaces must balance complexity with usability, allowing users to explore sophis-
ticated dispute structures without becoming overwhelmed by technical details.

Finally, ethical framework development remains essential for responsible deploy-
ment. This involves establishing comprehensive guidelines for deploying D-LLM systems
in sensitive applications that require careful bias management and transparent decision-
making processes.

D-LLM could be appreciated as promoting ethical Al practices and user empower-
ment. The explicit representation of preferences and transparent reasoning pathways en-
able users to understand and verify the decisions made by the system. This level of au-
ditability is crucial not only for fostering trust but also for ensuring compliance with eth-
ical standards and privacy regulations: the internal decision-making process is both visi-
ble and editable, while users are granted unprecedented control over how their personal
data is used and interpreted by the Al Conversely, this transparency can lead to iterative
feedback that enhances system performance and fairness, ensuring that the Al remains
aligned with the diverse values and expectations of its user base [60].

5. Conclusions

This article addresses a critical gap in current Al systems’ ability to handle contested
knowledge domains by introducing dialogical large language models (D-LLMs). Through
the integration of GRAPHYP’s structured knowledge representation with LLM capabili-
ties, we demonstrate a novel approach to preserving multiple perspectives while main-
taining system usability and interpretability.

Primary Contributions

Our work makes three key contributions to human—Al interaction research. First, we
establish a technical framework for integrating dialogical knowledge graphs with large
language models, enabling the systematic representation of competing viewpoints. Sec-
ond, we demonstrate empirical validation across scientific, political, and social network
domains, showing significant improvements in perspective coverage and bias detection.
Third, we provide theoretical foundations for dispute-aware personalization that en-
hances rather than replaces human decision-making capacity.

Limitations and Future Work
Several hot research challenges remain in further harnessing the potential of the D-
LLM. One promising area for future exploration involves the seamless integration of

GRAPHYP’s cognitive communities across heterogeneous data sources, including multi-
modal data streams such as video, audio, and sensor data. Current implementations have
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demonstrated the ability to integrate textual and structured data effectively; however,
work remains to find the techniques for expanding this to include a broader range of mo-
dalities, which may reveal additional dimensions of human preference that further en-
hance personalization. Future research may also investigate advanced techniques for dy-
namic graph evolution, such as adaptive decay functions and real-time community detec-
tion algorithms, which could improve the system’s ability to rapidly respond to changes
in user behavior [61].

Additionally, more sophisticated human-in-the-loop mechanisms could reinforce the
efficiency of the cognitive community framework: coupling more closely automated pref-
erence extraction with iterative human feedback should give to future systems the twin
benefits of machine consistency and human intuition. At least, the incorporation of com-
munity-level feedback mechanisms—where entire groups of users participate in refining
and validating the preference models—could lead to richer and more nuanced represen-
tations of human values and preferences

Significance and Impact

The D-LLM approach represents a new step toward Al systems that support rather
than supplant human judgment in complex knowledge domains.

Hybrid graph-LLM systems, including the D-LLM, offer a transformative approach
to personalized conversational Al by combining the explicit, interpretable representations
of knowledge graphs with the deep semantic reasoning capabilities of large language
models. The resulting systems offer a multitude of advantages, including nuanced repre-
sentation of complex preferences, enhanced multi-hop reasoning, transparent and ex-
plainable decision-making, dynamic adaptability, scalability, and ethical assurance. These
advantages are not merely academic; they translate into tangible improvements in diverse
applications ranging from adaptive tutoring and conversational recommendation to
health guidance and interactive journalism. By capturing and continually evolving a
structured map of user preferences, GRAPHYP’s cognitive communities enable Al sys-
tems to deliver interactions that are both highly personalized and fundamentally human-
centric. This integration ultimately serves to bridge the gap between static data-driven
personalization and the dynamic, intuitive understanding that characterizes genuine hu-
man interaction, paving the way for conversational Al systems that are truly responsive
to the varied recent applicative representations of human preferences [21,62].

By preserving access to competing interpretations and their underlying evidence
structures, these systems enable more informed decision-making while maintaining trans-
parency about ongoing controversies. This work opens up new perspectives for applica-
tions in scientific literature analysis, educational content delivery, and public policy dis-
course, where understanding knowledge formation processes is as important as the
knowledge itself.

The unique advantages for the expression of human preferences in GRAPHYP’s cog-
nitive communities are multifaceted and impactful as they provide an explicit, interpret-
able model of user behavior that enables multi-hop reasoning, dynamic adaptation, and
cross-modal integration for a transparent decision-making process. These capabilities are
critical for deploying personalized conversational agents that not only understand but
also anticipate and explain their actions, thereby fostering robust, trustful, and effective
human-AI interactions. Ongoing continuous research in hybrid graph-LLM systems—
particularly the further development of cognitive communities and human-in-the-loop
feedback mechanisms—promises to enhance these benefits even further, driving new ap-
plications and innovations in conversational Al across a broad range of domains [21].

As hybrid graph-LLM systems evolve, the integration of GRAPHYP’s cognitive com-
munities in D-LLM will remain pivotal in achieving expressive and adaptive personaliza-
tion. The explicit representation of user preferences through graph structures, coupled
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with the contextual generation capabilities of LLMs, provides a robust platform for un-
derstanding, predicting, and adapting to individual and communal human behaviors in
real time. The resulting Al systems would not only be more intelligent and responsive but
also more ethical and trustworthy —a critical step toward truly personalized and human-
centered conversational interfaces: the last assertion underscores our essential motivation
in presenting this D-LLM.

Another notable benefit is the ability to perform multi-hop and cross-modal reason-
ing. As users engage with conversational agents over extended periods, the accumulation
of interactions results in complex, interlinked user profiles. GRAPHYP’s cognitive com-
munities manage this complexity by storing and organizing preferences in a manner that
is readily interpretable by the LLM. As a result, the system can “connect the dots” between
seemingly disparate pieces of information. This capability is particularly important when
addressing queries that require the synthesis of the multiple factors that may drive human
preferences.
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Appendix A. Perspective Illustration of D-LLM Dialogical Interaction
Between GRAPHYP and a Large Language Model (LLM)

Appendix A.1. Overview

GRAPHYP’s cognitive community framework and adversarial information routes
can be integrated with Large Language Models (LLMs) to create dynamic systems for di-
alogical knowledge exchange. By combining GRAPHYP’s manifold subnetworks with
LLMs’ generative capabilities, this integration enables a nuanced exploration of contested
knowledge in science and social networks.

Appendix A.2. Core Integration Mechanism

GRAPHYP models cognitive communities —groups of users with shared search be-
haviors and adversarial information paths. Integration with LLMs enables the following:

e Assessor Shift Mapping: Using three key parameters: mass (volume of engagement),
intensity (depth of topic-specific search), and variety (diversity of sources) [15].

e Dialogical Simulation: LLMs generate multi-perspective responses using these pa-
rameters, reflecting competing viewpoints within subnetworks.

¢  Dynamic Knowledge Exchange (e.g., IDVSCI [63]).
o LLMs propose hypotheses based on GRAPHYP’s adversarial routes.
o  Communities respond via search behavior metrics.
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o  LLMs refine outputs using dual-diversity review (expert + adversarial evalua-
tion) [63].

Appendix A.3 Scientific Use Cases
1. Climate Change Disputes
e  Scenario: GRAPHYP identifies two cognitive communities:

Community A: High Mass/Intensity; focused on anthropogenic models;
Community B: High Variety; focused on natural variability.

. LLM Role:

Generates comparative reports citing sources from each subnetwork;
Highlights disputed metrics (e.g., temperature projections);
Triggers assessor shifts and proposes alternative exploration paths [17].

2. Genomics and Gene-Editing Controversies
e  Scenario: Debates over CRISPR ethics surface via distinct search routes.
. LLM Role:

Simulates peer review dialogue;
Directs users to contrasting literature via GRAPHYP’s bipartite hypergraphs.

Appendix A.4. Social Network Applications
1. Political Polarization
e  GRAPHYP:

Detects polarized cliques (e.g., vaccine-skeptic vs. pro-vaccine);
Tracks shifts via content diversity.

e LLM:

Offers personalized, bridging content across adversarial subnetworks.

2. Misinformation Detection
e GRAPHYP:

Flags disputed claims through query anomaly detection (e.g., “5G health risks”).
e LLM:

Generates counter-narratives through the following:

Collaborative filtering: Links users to trusted sources;
Personalized PageRank: Elevates high-centrality experts.

Appendix A.5. Implementation Requirements

Data Flow: Search logs — GRAPHYP subnetworks — LLM prompt engineering.

Evaluation: Dual-diversity review ensures balance between mainstream and adver-
sarial perspectives [63].

This integration supports structured, real-time dialogues in scientific and social do-
mains, advancing collective reasoning.

Appendix B. Assessor Shifts for Scientific Dispute Resolution

GRAPHYP perspective to resolve scientific disputes with LLMs: Cognitive commu-
nities—groups of experts or stakeholders—can leverage assessor shifts (changes in evalu-
ative stance during debates) to resolve disputes with LLM support.

Appendix B.1. Capturing Assessor Shifts
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e  Definition: Adjustments in how evidence or arguments are weighted in response to
a new input.

e Modeling: GRAPHYP tracks shifts via changes in search behavior, source citation,
and argumentative structure.

Appendix B.2. Integrating LLMs for Arbitration

e  Conflict-Aware Reasoning: LLMs use frameworks like the Cognitive Alignment
Framework to synthesize competing views through dual-process reasoning (heuris-
tic + analytical).

Example: In peer review, the LLM extracts arguments, maps conflicts, and generates
a consensus meta-review.

e  Bias Mitigation: LLMs can be trained to detect and counteract human biases (e.g.,
anchoring, conformity) for fairer outcomes.

e Multi-Agent Collaboration: Frameworks like RECONCILE simulate dialogical rea-
soning among LLM “agents,” each representing distinct assessor positions. Through
iterative voting, a reasoned consensus is formed.

Appendix B.3. Key Benefits

e  Transparency: Documents how community positions evolve.

e  Efficiency: Accelerates dispute resolution.

e  Bias Reduction: Counters human and model biases.

e  Scalability: Manages large-scale, multi-perspective debates beyond traditional peer
review.

By combining assessor shifts with LLM frameworks, scientific disputes can be ap-

proached more systematically and equitably, fostering transparent and robust knowledge
production.
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