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ABSTRACT 

The concept of FAIR Digital Objects represents a foundational step towards realizing 

machine-actionable, interoperable data infrastructures across scientific and industrial 
domains. As digital spaces become increasingly heterogeneous, scalable mechanisms 
for data processing and interpretability are essential. This paper provides a comparative 

analysis of various typing mechanisms to associate FAIR Digital Objects with their 
operations, addressing the pressing need for a structured approach to manage 

data interactions within the FAIR Digital Objects ecosystem. By defining and 

examining three core models of typing mechanisms—record typing, profile typing, 
and attribute typing—this work evaluates each model’s quantitative quality indicators, 
using mathematical measures, and qualitative aspects. In particular, models are 

quantitatively evaluated with respect to their simplicity, efficiency, and flexibility, 
as well as being qualitatively assessed with respect to granularity, required client 
knowledge, and versatility, thereby shedding light on their strengths, limitations, 
and interoperability. With this assessment, our objective is to offer insights for the 

adoption of FDO frameworks that enhance data automation and promote the seamless 
exchange of digital resources across domains. 
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2 1 INTRODUCTION 

There is a growing trend in both science and industry to try to connect previously isolated 

domains, driven by the growing complexity of modern systems and the demand for 
interoperability. Hence, it becomes increasingly important to develop common approaches for 
automated acquisition, interpretability, and processing of digital data that can be considered 

digital resources (European Commission et al., 2021; Jeffery et al., 2021; Wilkinson et al., 2016). 
Processing very large, heterogeneous, and diverse data sets from different domains using the 

existing sets of incompatible APIs applicable to those data sets is simply not possible (Soiland-
Reyes, Goble, and Groth, 2024). However, it is widely agreed that the future of data processing 

must be highly automated to cope with the increasing amounts of digital resources that 
are of great importance for meeting the requirements of the UN Sustainable Development 
Goals (Madavarapu et al., 2024). A foundational infrastructure that provides a common and 

more automatable approach to discovering and executing operations on data could have 

the same impact on data processing that the Internet and Web technologies have had 

on communication and multimedia information exchange (Schultes and Wittenburg, 2019; 
Wittenburg and Strawn, 2018). This could lead to large and necessary advances in scientific 

discovery, and industrial efficiency and sustainability. 

The FAIR Digital Objects (FDOs) concept describes how such an infrastructure could be 

realized by representing digital resources of any type in a way that enables automated 

processing (Blumenröhr et al., 2025; Schultes and Wittenburg, 2019; Smedt, Koureas, and 

Wittenburg, 2020). It does so by implementing the FAIR Principles (Wilkinson et al., 2016), 
which provide guidelines for better data management and stewardship, using the Digital 
Object framework (Kahn and Wilensky, 2006). While different implementation strategies 
for FDOs exist, they all aim towards an automated processing by the machine-actionable 

characteristics of an FDO that is enabled by operations. An operation will in general be 

associated with an FDO by its typing mechanism and may be executed on different FDO 

levels, i.e., the metadata or the bit sequence of the digital resource (Blumenröhr et al., 2025). 
Operations may range from basic Create, Read, Update and Delete (CRUD) operations to more 

advanced operations and can be implemented using various technologies. However, the exact 
specification of a type system for FDOs that enables a mechanism to associate the objects 
with applicable operations is not yet fully scoped (Blumenröhr et al., 2025; Soiland-Reyes, 
Goble, and Groth, 2024). At this point, there exist different views and implementations for 
associating FDOs and operations by typing. In fact, having multiple approaches is desirable 

as there may not be a one-size-fits-all solution. Nevertheless, to ensure an interoperable 

ecosystem for FDOs, it is important to assess if and how these approaches are compatible 

with each other. Providing a structured analysis of these association models will support 
the adoption of FDOs by different communities. Associating FDOs with their operations is 
seen as the missing step in data processing automation by machine-actionability. Formalized 

type specifications and user intentions paired with formalized reuse conditions will be key in 

this regard. 

In this work, we define and provide an assessment of typing mechanisms for associating FDOs 
with their operations based on different conceptual data models. We describe each data model 
along with an implementation example, and comparatively evaluate their characteristics with 

respect to these typing mechanisms. Based on the evaluation, we discuss the results in the 

larger context of FDO processability and perspectives for communities that want to adopt 
the concept. 

2 BACKGROUND 

2.1 FOUNDATIONS OF FDOS AND THE CORE MODEL 

FDOs are persistent entities that bundle information for FAIR processing of a bit sequence 

including different kinds of metadata. They are referenced by a Persistent Identifier (PID), 
fulfill FAIR criteria in their core mechanisms, and can be protected against misuse in 

various dimensions (Smedt, Koureas, and Wittenburg, 2020). In the FDO core model given 

by (Blumenröhr et al., 2025), each FDO represents a basic structure that allows for different 
configurations, i.e. configuration types (Lannom, Peters-von Gehlen, et al., 2022), and has the 

following characteristics: 
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3 • A Handle PID will be resolved into an FDO information record that contains the Kernel 
Information. 

• The Kernel Information describes the FDO core metadata attributes, such as its data type, 
location and additional metadata references. 

• The Kernel Information is structured as a set of attributes expressed as a set of key-value 

pairs, aggregated by a Kernel Information Profile (Weigel et al., 2019) that the information 

record must conform to. 

• For compatibility reasons, only a minimal set of attributes are specified in the Kernel 
Information Profile as also proposed by the FDO Forum1 and the Research Data Alliance2. 

• Each attribute included in the profile must be defined and registered in a public registry 

according to the specification of PID-Information Types (PITs) (Schwardmann, 2017), 
making it machine-interpretable. 

• It is actionable through a set of operations that are associated with the Kernel 
Information via a typing mechanism. 

This minimal definition of the FDOs follows the original idea of the Internet, which defines a basic 

package structure for information transfer and allows making use of a communication protocol 
for FDOs, the Digital Object Interface Protocol (DOIP) (DONA Foundation, 2018). FDOs can 

represent bit sequences with different kinds of content, such as data, metadata, configurations, 
semantic assertions, software, etc. As illustrated in Figure 1, due to their conceptual core 

model, FDOs have the potential to be used as a basic interoperability layer to connect different 
types of repositories and data spaces (Curry, Scerri, and Tuikka, 2022). For further technical 
details on FDOs, see the FDO Overview (Anders et al., 2023a), and the FDO Requirement 
Specifications (Anders et al., 2023b). Note that the term profile is used interchangeably with 

the term Kernel Information Profile in the subsequent sections. 

Figure 1 The conceptual FDO 
core model. 

2.2 PROBLEM DESCRIPTION 

Several works on FDO implementations have described the theoretical applicability of FDO 

operations, e.g. (Blanchi, Gebre, and Wittenburg, 2022; Blumenröhr et al., 2025; Islam, 2023; 
Lannom, Koureas, and Hardisty, 2020) or have even implemented specialized systems that 
enable the execution of operations in their FDO ecosystem, e.g. (Blumenröhr and Aversa, 2023; 
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4 Islam et al., 2023). However, to the best of our knowledge, a set of generic mechanisms for 
associating these operations with FDOs via a set of rules, i.e., a type system, in compliance with 

the description of the original concept, has not been worked out yet. This makes it hard to assess 
and to reproduce these use-case specific operation frameworks. 

The authors of this work have developed typing mechanisms to associate FDOs and operations 
within their organizations, which were extensively discussed in the frame of the FDO Forum. At 
this point, there exist some reference implementations for these mechanisms as described in 

the following sections, but no detailed definition of their data models and how these compare 

to each other. We therefore see this paper as a step forward in assessing these association 

models and providing a baseline for implementing (inter-)operable FDO ecosystems. 

3 MODELS FOR ASSOCIATING FDOS TO THEIR OPERATIONS 

In this section, we first describe the different modeling approaches for the association of FDOs 
with operations and their underlying typing mechanisms. We assume that an FDO is specified 

according to the core model described in section 2.1. We first elaborate on the general idea 

of the typing mechanisms that we define as part of a type system for FDOs, and second on 

the rules of how they integrate with different FDO components. These typing mechanisms 
are related to well-known typing principles in computer science and are finally incorporated 

in each association model. Technical implementation details for these association models are 

not considered. 

In the second part of this section, we go through several application examples that use these 

different association models based on the typing mechanisms. 

3.1 TYPING MECHANISMS 

The problem with the terms ‘type’ and ‘typing’ is that they are generic, and often have different 
definitions across disciplines and technologies. This work does not aim to provide an exhaustive 

description of these terms but it does require a more concrete description in the context of 
FDOs. It can be said at this point that many of the terms employed relate to ideas from the 

field of Object-oriented Programming (OOP), of which relations to other principles such as 
abstraction and encapsulation have already been described by the work of (Blumenröhr et al., 
2025; Schultes and Wittenburg, 2019). The next step is to infer mechanisms for associating 

operations on the basis of abstraction and encapsulation provided by FDOs. It is important to 

note that we consider the analogy between OOP and FDOs only on an abstract, conceptual 
level, whilst the implementation details of FDOs are a different aspect. The following terms also 

found in OOP are therefore defined in the context of FDOs as the following: 

• Abstraction and Encapsulation: FDOs pack data and metadata into a single unit by 

definition, encapsulating internal details. The interface to the FDO is given by attributes 
that describe possible interactions. The set of attributes is given by its profile. The profile 

itself is therefore a class. It is an abstraction of all FDOs that satisfy the profile 

requirements. 

• FDO Type: a characterization of an FDO through the set of its typed attributes (e.g. using 

PITs) that are bundled in a profile and are subject to syntactic and semantic specifications. 

• Type System: inspired by the work of (Pierce, 2002), we define this as a set of rules for 
validating how FDOs are typed and associated with a set of operations by one or more 

typing mechanisms. 

• Typing Mechanism: the exact procedure to determine if and how an operation is 
associated with a particular FDO via its kernel information elements, i.e., key-value pairs of 
typed attributes and profile. 

The typing mechanisms to associate operations with FDOs are described below. The details and 

relations of these mechanisms to principles known from OOP are illustrated in Figure 2. 

With respect to the association approach, there are two obvious possibilities. The first is to 

extend the FDO interfaces and to include operations as attributes in the FDO record by changing 

the profile (operation association to FDO). The other is to leave the interfaces of FDOs unchanged 

and to describe requirements for the interfaces of the operation representation (FDO association 
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5 to operation). This can be represented as relations between operations and types (i.e., typed 

attributed using PITs) in a dedicated type system. 

Even though object association to operations is also possible within OOP, operation association 

to objects of classes is encouraged there as part of the encapsulation. Operations behind 

Representational State Transfer (REST) services are also usually associated to the objects behind 

their interfaces. Object association to operation is more commonly used in the context of media 

types, in which the applicability of an operation is decided by the type of object. The type 

encapsulates the internal complexity of both the object and the operation. This results in three 

core mechanisms of typing that we detail in the following. 

Figure 2 Typing Mechanisms. 
The conceptual typing 
mechanism to associate FDOs 
and their operations in analogy 
to OOP. 

3.1.1 Record Typing 

The most straightforward way of typing FDOs can be achieved by specifying an operation 

directly in the information record of the FDO as a key-value pair using typed attributes, thereby 

directly associating each operation with the individual object. The type is hereby purely defined 

by the constellation of applicable operations. Conceptually, this is similar to the principle of 
structural typing in OOP, in which the type of an object is determined by the methods it supports 
at compile time rather than by its explicit class. This focuses on what the object can do rather 
than what it is. All applicable operations are therefore also part of the attributes in the FDO 

information record and are fixed at instantiation time of the object. 

3.1.2 Profile Typing 

Profile typing means that operations that are associated with an FDO are inferred from the 

profile that is instantiated by this FDO and are therefore considered the type. Attaching the 

operations to FDO profiles is possible because each FDO has a profile as a mandatory typed 

attribute in its information record according to the kernel information requirements. This is 
comparable to nominal typing in OOP in which an operation in the form of a method is bound 

to a class and its name, meaning that it operates on instances of that class (objects) and has 
access to the class’s attributes. 

3.1.3 Attribute Typing 

This typing mechanism considers the set of attributes in an FDO’s information record, such 

that each operation is associated by the presence of one or more attributes that constitute 
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the type in dependency of these requirements. This also relates to duck typing in OOP with the 

aspect that an object’s usability can also be determined by the presence of specific attributes 
at runtime, rather than the object’s class. This works for FDOs because their typed attributes 
refer to the specification of PITs, meaning that each element is unambiguously identified, has 
a defined value space, is possibly associated with terms from controlled vocabularies, and 

can be reused and recognized for all FDOs. In principle, the association can be determined 

by considering one or more typed attributes, validating either only their key presence, or the 

presence of specific key-value pairs. 

3.2 IMPLEMENTATION EXAMPLES 

The examples described in this subsection originate from different projects and organizations 
the authors are involved in, using different types of data, technologies and service architectures. 
We concentrate here on the association models and the essential workflow, also considering 

information exchange between FDO services and the client side. Apart from a minimal 
necessary description, we do not therefore provide technical details of each implementation 

and the service components that are used in these projects. We also do not further explain the 

details of how these operations are ultimately applied to the contents of the FDOs they are 

associated with. For this, we refer to the references provided in each section. We also want to 

point out that different complexity levels of these implementations are not necessarily related 

to the complexity of the individual association model. These will be evaluated in section 4. 
However, according to the FDO core model, each FDO in these examples is registered at—and is 
thus resolvable via—the Handle Registry, has a typed information record, and complies to one 

of the known FDO configuration types. 

3.2.1 Record Typing in Interactive Computing Environments 

This example considers a simple FDO information record that represents a catalog containing 

links to various climate model simulations described by domain-specific metadata key-value 

pairs. FDO-related information is statically implemented in the record. Hence, Figure 3 lays out 
how the implementation of an association mechanism for operations via record typing works 
in principle. The diagram shows a workflow illustrating the interaction between an FDO and 

a client using a computational environment, i.e., a Jupyter Notebook, to retrieve predefined 

operations (here labeled as operation 1 for opening the catalog and operation 2 for reading the 

catalog) that are bundled in the information record among other metadata required to execute 

the operation, such as the content type, the reference to the bit sequence, or other metadata. 
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Figure 3 Record typing 
example. The conceptual 
workflow for interacting with 
an FDO based on record typing. 

Depending on the FDO service, a client can either request the list of associated operations or 
directly retrieve them from the FDO’s information record. In this example, these operations are 

a specification of code that is executable on the client side. 

From a technical implementation perspective, the information record itself contains a set 
of operations that are in principle relevant to any object conforming to the content-type it 
represents. Note that these FDOs cannot dynamically change their operations or substitute 

them at runtime. The operations are fixed and cannot vary based on different FDO subtypes. 
The Jupyter Notebook can be found at (Kulüke, 2025). 



7 3.2.2 Profile Typing with Multiple Registries 

Within the FDO One project,3 the focus is on providing basic operations for FDOs to build up 

a functional FDO ecosystem, e.g. CRUD operations (create and delete an FDO, get or update 

the (meta)data of an FDO) or copying an FDO and moving a distributed FDO from one storage 

location (data service) to another. For these types of operations, domain-specific attributes 
and content-types of bit sequences are irrelevant. Rather, the structure of the FDO itself is of 
importance, for example, whether it represents zero, one, or multiple (meta)data bit sequences 
and how those are stored. This information is determined by the FDO profile. Hence, the profile 

typing mechanism is used to associate those operations to FDO profiles. In particular, each FDO 

profile contains not only a list of mandatory and optional attributes which must be present in an 

FDO information record, but also a list of operations that can be applied to any FDO complying 

with this specific FDO profile. Profiles are registered in the profile registry, which is based on a 

Data Type Registry.4 

As described in Figure 4, to find operations associated with an FDO, a client may retrieve the 

profile (either directly or through a software component) and receive a list of PIDs identifying 

operations that are associated to this FDO. The operations, in turn, are registered in the 

operation registry together with all necessary execution information5. For further reading and 

technical details of the FDO One testbed implementation, we refer to (fairdo, 2025). 

Figure 4 Profile typing 
example. The conceptual 
workflow for interacting with 
an FDO based on profile typing. 
Irrespective of the service 
architecture that is used to 
implement and execute 
operations, such as the three 
registries in this example, the 
FDO service must infer the 
association between the 
profile of an FDO and its set of 
operations. 

3.2.3 Attribute Typing with Operation FDOs 

To realize the attribute typing mechanism, an operation must be represented in a way that 
allows it to be related to the attributes in the targeted FDO’s information record that represents 
research data (i.e., labeled here as target FDO). This could be easily provided by representing 

the operation itself as an FDO as well, which we label here as operation FDO. This follows the 

concept’s generic approach that each type of bit sequence can be represented as an FDO. The 

specific implementation of the operation is thus described in this operation FDO information 

record, detailing its implementation, possible execution mechanism, and the type-association 

requirements in the form of a typed attribute’s key-value pair. 

An example of this modeling approach is illustrated in Figure 5, where a target FDO and 

two operation FDOs are shown. Each operation FDO represents the implementation of the 

underlying operation that is either applied to the bit sequence, i.e., operation 1 for schema 

validation, or to the kernel metadata, i.e., operation 2 for license evaluation. The information 
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8 record of the operation FDO contains at least one key-value pair where the key expresses the 

requiredInput and the value references the PIT that indicates applicability of the operation 

to all FDOs that contain a typed attribute of this PIT in their information record. Depending 

on these requirements, only the corresponding key of the referenced PIT, or the key and a 

specific value in the form of a tuple (cf. operation 1) may be specified. This construction 

enables a dynamic typing mechanism, in which operations are ‘aware’ of the traits an 

FDO must have for their applicability to discover them at runtime. With respect to the 

infrastructure, additional services that know how to interpret and validate these type-based 

relations and subsequently execute the implemented operation, which is not detailed in this 
work, will be required. For further reading and technical details of this example, we refer 
to (Blumenröhr, 2025). 

Figure 5 The conceptual 
workflow for interacting with 
an FDO based on attribute 
typing. Irrespective of how the 
operation is ultimately 
performed (requested by the 
service in this example), the 
FDO service must infer the 
association based on the 
information record contents 
and references of the target-
and operation FDOs. 

4 MODEL EVALUATION AND DISCUSSION 

To evaluate the different approaches for associating FDOs with operations based on the three 

typing mechanisms, we embed the association approaches into a mathematical context by 

modeling them as directed graphs (Section 4.1). Afterwards, a set of quality indicators is 
defined that are inspired by the methods used in the domain of entity-relationship modeling 

as described by (Moody, 1998) (Section 4.2). These quality indicators finally serve the purpose 

of putting the different association models in relation to each other and evaluating their 
advantages, disadvantages, and compatibility. To quantify the differences, we define metrics 
for these quality indicators that are evaluated on each graph model separately. In addition, we 

will also consider purely qualitative aspects. 

However, in this work, we concentrate only on the comparison between the models rather than 

providing absolute numbers for the implementation examples we have introduced, as these 

are not relevant in the frame of a comparative analysis on the conceptual level. Furthermore, 
the examples will also be briefly discussed with respect to implementation aspects, limitations, 
and future work (Section 4.4). 

4.1 MODELING THE ASSOCIATION MECHANISMS AS GRAPHS 

To compare the association models not only qualitatively but also quantitatively, the three 

association approaches need to be put into a mathematical framework. For a distinct 
representation of all involved components, we model the association approaches first as 
Entity-Relationship (ER) Models, based on the work of (Chen, 1976), and then as directed 
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9 graphs. This seems natural because associations between FDOs and operations are all based 

on references pointing from one entity to another entity. Those entities might be FDOs, 
operations, profiles (in the case of profile typing), or attribute definitions according to PITs 
(in the case of attribute typing). Instances of attribute definitions, i.e., typed attributes, 
are represented using the Attribute class in the ER model. The components of the ER 

model are then converted into mathematical graph components such that entities and 

their attributes (of the Attribute class) are represented as vertices, while relationships are 

represented as edges. Relationships such as ‘FDO f contains attribute a in its information 

record’ and ‘attribute a points to operation o’ directly translate into edges, while the 

entities named above, including instances of attribute definitions, translate into vertices in 

a graph. In this way, the ER model semantically specifies the components and structure 

of each association model generically, whilst the corresponding graph details the actual 
complexity to assess the number of elementary operations. This addresses especially the direct 
relationships between attribute instances and other components via edges, which can only 

be modeled implicitly in the ER diagram. This is further detailed in Definition 2 and visualized 

by Figure 6. 

For the rest of this section, we index our association models with i ∈ {1, 2, 3}, such that i = 1 refers 
to record typing, i = 2 to profile typing, and i = 3 to attribute typing. In the following, we examine 

each association model separately under the assumption that the whole FDO ecosystem purely 

relies on a single association approach. 

Definition 1 (Components). Let F be the set of all FDOs representing data, O the set of all 
operations, P the set of all FDO profiles, and Adef the set of all attribute definitions (referring i 
to PID-Information Types), in the whole FDO ecosystem. Attribute definitions are instantiated 

by typed attributes, from now on denoted only as attributes, (e.g., in FDO, operation, or profile 

information records) which are given by the set Ai. We denote the numbers of those quantities 
by |F|, |O|, |P|, |Adef | and |Ai|, respectively. The set Ci = F ∪ O ∪ P ∪ Adef contains all components i i 
of the i-th association model. 

Attribute definitions determine a key for an attribute together with a set of restrictions on the 

value of the attribute. Each attribute a = (a1, a2) ∈ Ai is represented by a tuple that consists of a 

key a1 and a value a2. Two attributes a = (a1, a2), b = (b1, b2) ∈ Ai are considered to be the same 

element (i.e., a = b) if and only if they have the same key-value-pair (i.e., a1 = b1 and a2 = b2) 
and they are part of the same information record. 

All components of the FDO ecosystem are uniquely identified by PIDs. Some components, such 

as the set of profiles and the set of attribute definitions or attributes, depend on the examined 

association approach. For example, attribute definitions might have different required keys and 

restrictions on the values depending on the model. In addition, the content of the profiles might 
differ according to the implementation and the chosen model. Hence, the set of attributes and 

the set of profiles are indexed by i ∈ {1, 2, 3}. The FDOs and operations are considered to be the 

same sets in all models (strictly speaking, we assume that there are bijective mappings Mij : 
Fi → Fj and M ′ ij : Oi → Oj between FDOs from different models and operations from different 
models, for i ≠ j). 

Definition 2 (Entity Relationship and Graph Models). We define a simple ER and graph model 
for the three association approaches. The ER model is the basis specifying the elements of the 

set Ci as entities and their relationships, and the elements of the set Ai as attributes of these 

entities. Furthermore, for i ∈ {1, 2, 3}, we denote Gi = (Vi, Ei) as the graph Gi, which consists of 
vertices vi ∈ Vi that are connected by edges ei = {xi, yi} ∈ Ei with xi, yi ∈ Vi. 

• i = 1: For record typing, each FDO is directly associated with an operation via an attribute 

within the information record. Hence, 

V1 = F ∪ A1 ∪ O, 

E1 = {{f , a} : FDO f ∈ F has the attribute a ∈ A1} 

∪ {{a, o} : attribute a ∈ A1 references operation o ∈ O}. 

• i = 2: In terms of profile typing, each FDO references a profile via an attribute in the 

information record. In turn, an attribute in the profile information record references an 
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10 FDO operation. Therefore, 

V2 = F ∪ A2 ∪ P ∪ O, 

E2 = {{f , a} : FDO f ∈ F has the attribute a ∈ A2} 

∪ {{a, p} : attribute a ∈ A2 references profile p ∈ P} 

∪ {{p, a} : profile p ∈ P has the attribute a ∈ A2} 

∪ {{a, o} : attribute a ∈ A2 references operation o ∈ O}. 

• i = 3: For attribute typing, each operation FDO implicitly references a set of attributes 
within an FDO information record via their attribute definition and using attributes in the 

operation FDO. Hence, 

V3 = F ∪ A3 ∪ Adef ∪ O,3 

E3 = {{o, a} : operation o ∈ O has the attribute a ∈ A3} 

∪ {{a, adef } : attribute a ∈ A3 references attribute adef ∈ Adef }3 

′∪ {{a , adef } : attribute a ′ ∈ A3 references attribute adef ∈ Adef }3 

′∪ {{a , f } : attribute a ′ ∈ A3 is contained in FDO f ∈ F}. 
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Figure 6 Entity Relationship 
(a-c) and corresponding 
exemplary graph 
representations (d-f), 
modeling the three association 
approaches based on the 
typing mechanisms. 
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11 References point from the originating entity to the referenced entity. Note that references from 

attributes to attribute definitions in i = 3 arise from the instantiation itself. Consequently, the 

edges {x, y} ∈ Ei are naturally ordered and may be modeled as directed edges (see Figures 6d-f 
where references are explicitly displayed as directed edges). However, for any directed edge 

from x ∈ Vi to y ∈ Vi, there will never be another directed edge from y to x due to model 
definition. Hence, there is no need to differentiate between the orientation of edges, so we 

will work with simple graphs and adopt the notation as in Definition 2. 

Figure 6 visualizes Definition 2. The ER models (labels a, b, c) constitute the generic constellation 

of the different typing mechanism models. The three graphs (labels d, e, f) derived from these 

ER models, respectively, illustrate an exemplary excerpt of a potential FDO ecosystem. They all 
contain the same FDOs f1, … , f4, the same operations o1, … , o5 and represent the same set of 
associations: f1 is associated with o1, o2 and o3, while f2 and f3 are both associated with o3, and 

f4 is associated with o5. 

For record typing, each FDO might have several attributes for operation association, which 

contain the same key (i.e., a1 = b1 = c1 = d1 = e1 = f1). The attributes directly reference an 

operation via their value. In this example, attributes c, d, and e all have the same value (i.e., 
c2 = d2 = e2) because they refer to the same operation. Each path connecting an FDO on the left 
side with an operation on the right side represents one FDO-operation-association. 

In terms of profile typing, each FDO has exactly one attribute containing the profile reference. 
Those attributes have the same keys (i.e., a1 = b1 = c1 = d1). If two FDOs have the same profile, 
their attributes point to the same profile in the graph (i.e., b2 = c2). Each profile contains exactly 

one attribute (e1 = f1 = g1) to specify a list of operations as its value. Similarly to record typing, 
each path from left to right represents one FDO-operation-association. 

For attribute typing, each target FDO may contain multiple attributes. Similarly, each operation 

FDO may contain multiple attributes, with keys being all tantamount (i.e., h1 = i1 = j1 = k1 = l1 = 

m1 = n1). The attributes in the operation FDO information record reference attribute definitions 
that are instantiated by attributes in the target FDO information record (i.e., in this example, we 

have h2 = a1, i2 = b1, j2 = d1, and so on). Note that this model is a simplification of attribute typing 

because we just consider the case that attributes in the operation record match with attributes 
in the FDO information record if the attribute in the FDO information record is present (i.e., has 
the desired key). We do not consider possible restrictions on the allowed values of attributes in 

the FDO information record and the resulting impact on granularity. 

4.2 EVALUATION OF QUALITY INDICATORS AND METRICS 

We examine quantitative quality indicators (simplicity, efficiency, flexibility) and qualitative 

aspects (granularity, required client knowledge and versatility). For the quantitative quality 

indicators, we define simple mathematical measures that are separately evaluated for each 

model under the assumption that the whole FDO ecosystem relies purely on a single 

association approach. 

Throughout this work, we use big O notation to assess computational complexity of the 

conceptual models. Note that we generally make no assumptions about the data structure used 

in an implementation in which the information concerning the assessments would be stored. 

Quantitative Quality Indicators 

Simplicity refers to how complex it will be for a client to handle an FDO ecosystem that applies a 

given association model with respect to its structure. This can be measured using metrics such 

as the number of components involved and the number of their relations. 

Efficiency takes into account how complex it will be to find all operations that are associated 

to an FDO or to assess whether a certain FDO is associated to a given operation. This can be 

measured using metrics such as the number of edges in the graph that make up an association. 

Flexibility as a quality indicator relates to the question how many active modifications are 

required when new components are added to an existing FDO ecosystem that applies a 

particular association model. This can be measured using metrics such as the number of 
updates that must be performed when a new association between an FDO and an operation 

is made. 
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The qualitative aspects we consider are the granularity of the association models in comparison 

to the amount of client knowledge that is required to add the desired associations to a new FDO. 
In addition, the versatility of the models is discussed, which considers the possible processing 

options of an FDO through its associated operations in relation to the aspects imposed by 

efficiency and flexibility. 

Definition 3. The following notation is introduced to evaluate the quantitative measures (see 

Theorem 5). 

1. For any non-empty subset F ′ ⊆ F, OF ′ is the set of all operations that are associated with at 
least one FDO f ∈ F ′ . For the set containing a single element F ′ = {f }, we write Of instead of 
O{f }. For profile typing (i = 2) and a non-empty subset of profiles P ′ ⊆ P, we define the set of 
all operations that are referenced by at least one profile p ∈ P ′ as OP ′ . 

2. For any set O ′ ⊆ O, FO′  is the set of all FDOs that are associated with at least one operation 

o ∈ O ′ . For the set containing a single element O′  = {o}, we write Fo instead of F{o}. 

3. For f ∈ F and o ∈ O, let Af and Ao be the sets of all attributes in the information records of 
FDOs and operations, respectively. 

4. Finally, the following definition only holds for i = 2: For subsets F ′ ⊆ F and O ′ ⊆ O, we define 

PF ′ as the set of all profiles referenced by at least one FDO f ∈ F ′ , PO ′ as the set of profiles 
associated with at least one operation o ∈ O ′ , and PF ′ O ′ = PF ′ ∩ PO ′ as the set of all profiles 
that are part of at least one FDO operation association between the elements of the set of 
F ′ and O′  . 

Note that the total number of FDO-operation-associations is represented by ∑   f ∈F |Of | =
∑ |Fo| irrespective of the association o model. ∈O 

Definition 4 (Measures for Quantitative Quality Indicators). For i ∈ {1, 2, 3}, we define the 

following metrics to assess the quality indicators: 

1. Ci is the total number of components (see Definition 1) in the FDO ecosystem that are 

(potentially) part of each association mechanism. This includes not only those FDOs, 
operations, attribute definitions and profiles that are actually part of at least one 

FDO-operation-association, but also the total sets of the components that might 
be involved. 

2. Ai is the total number of instantiated attributes that are present in FDO, profile, or 
operation information records, which are actually part of the association mechanism. 
Here, attributes are counted multiple times if the same key-value pair is present in 

multiple information records. Both Ci and Ai are indicators of the space complexity for 
each model. 

3. Qi is is an upper bound on the time complexity to decide whether an FDO f ∈ F is 
associated to an operation o ∈ O. 

4. Ri is an upper bound on the time complexity to find all FDOs that are associated with a 

single operation. 

5. Si is an upper bound on the time complexity to find all operations associated with a single 

FDO. 

6. Ti is an upper bound on the time complexity to perform all required updates in the FDO 

ecosystem to associate a new operation with a set F ′ ⊆ F of FDOs. 

7. Ui is an upper bound on the time complexity to perform all required updates in the FDO 

ecosystem to associate a new FDO with a set of operations O ′ ⊆ O. 

Theorem 5 (Evaluated Measures): The measures specified in Definition 4 are evaluated to the 

following quantities: 

1. C1 = |F| + |O| + 1, 

C2 = |F| + |O| + |P ′| + 2, 

C3 = |F| + |O| + |Adef |.3 



13 Blumenröhr et al. 2. For i = 3, let b1, … , b|FO ′| ∈ ℕ be the number of attributes being part of the association Data Science Journal 
mechanism for the FDOs f1, … , f|FO ′|, and let d1, … , d|OF ′| ∈ ℕ be the number of attributes DOI: 10.5334/dsj-2025-

022 taking part in the association mechanism for each operation o1, … , o|OF ′|. 

A1 = ∑ |Of |, 
f ∈ FO ′ 

A2 = |FO ′| + |PF ′ O ′|, 

|FO ′| |OF ′| 

A3 = ∑ bj + ∑ dj. 
j=1 j=1 

3. Q1 = O(|Af |), 

Q2 = O(|Af | + |OP ′|),f 

Q3 = O(|Af | + |Ao|). 

4. 
R1 = O (∑ |Af |) , 

f ∈ F 

R2 = O (∑ |Af | + ∑ |O{p}|) , 
f ∈ F p∈PF ′ 

R3 = O (∑ |Af | + |Ao|) . 
f ∈ F 

5. S1 = O(|Af |), 

S2 = O(|Af | + |OP ′|),f 

S3 = O (|Af | + ∑ |Ao|) . 
o∈O 

6. T1 = O(|F ′|), 

T2 = O(|P{o}|), 

T3 = 0. 

7. U1 = O(|O ′|), 

U2 = 0, 

U3 = 0. 

Proof. 1. According to Definition 1, the components involve the sets F, O, P and Adef .i 
However, we just count those components that are potentially taking part in the 

association mechanism. For i = 1, this is the set of FDOs, the set of operations, and a single 

attribute definition (as all FDOs reference their operations via the same attribute key). For 
i = 2, there are two attribute definitions involved in the association mechanism, one to 

reference an FDO profile in all FDO information records, and one to reference a list of 
operations in all profile information records. For i = 3, there are no restrictions on the set of 
attributes that are being used in the FDO information records. Hence, all attribute 

definitions Adef are potentially taking part in the association mechanism. 3 

2. Counting the number of attributes being part of the association mechanism means to 

count all edges with the label ‘has attribute’ as illustrated in Figure 6 that are part of at 
least one FDO-operation association. For i = 1, each association corresponds to one 

attribute, such that the number of attributes equals the total number of associations. For 
i = 2, each FDO contains exactly one attribute to be connected to a profile (totaling |FO ′| 
attributes), and each profile has exactly one attribute that connects it to a set of 
operations (totaling |PF ′ O ′| attributes). For i = 3, the equation follows by definition of bj 
and dj. 
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the whole FDO information record for the attribute containing the reference to o, taking 

time O(|Af |). For i = 2, one needs to find the profile p in the FDO information record within 

time O(|Af |). Since accessing the profile and its list of operations highly depends on the 

implementation but is not directly relevant for the comparative analysis, we assume 

access in constant time. Finally, the list of operations needs to be searched for the 

reference to o, taking time O(|O{p}|). For i = 3, additionally, all attributes in the operation 

information record need to be found that determine the association, which is done in 

O(|Ao|). Afterwards, each of the associations that were found need to be matched against 
the attributes in the information record (after converting either the attributes in the FDO 

or the attributes in the operation FDO into a suitable format). 

4. For i = 1, one has to search each FDO information record in the FDO ecosystem for its 
operations, which is O(∑f ∈ F |Af |). For i = 2, similar time is required to find all profiles PF ′ . 
A profile has one attribute containing a list of operations, and we assume that each list of 
operations can be accessed in constant time. Furthermore, checking whether those lists 
contain the operation requires reading the whole operation list within time O(∑ p∈P ′ |O{p}|). 

F 

For i = 3, first find all operation attributes and convert them into a suitable format within 

time O(|Ao|). Then, read all attributes in all FDOs and check whether they match the 

operation attributes, taking time O(∑f ∈ F |Af |). 

5. For all i ∈ {1, 2, 3}, it is required to read all attributes in the information record. For i = 2, 
one then accesses the profile p within O(1) and the list of operations also within O(1). 
Reading all elements from that list takes time O(|O{p}|). For i = 3, the FDO information 

record is converted into a suitable format (within O(|Af |)). Then, each operation FDO has 
to be checked against the target FDO, which requires time O(∑ |Ao|). o∈O 

6. For i = 1, relating a new operation to the set F ′ requires one to add one attribute in each 

FDO information record, yielding O(|F ′|) updates in total. For i = 2, the new operation 

needs to be added to all profiles that it should be applicable to, which are |P{o}|. For i = 3, 
no updates need to be done because the set F ′ is implicitly defined by the attributes in the 

operation FDO. 

7. To associate a new FDO with a set of operations O ′ , |O ′| new attributes need to be added 

to the FDO information record for i = 1. In the case of i = 2, no updates need to be 

performed because the new FDO is required to have a profile anyway and the profile 

implicitly defines the set O ′ . For i = 3, no updates need to be performed with the same 

reason as detailed in 6. 

Note that the set F ′ in part 6 is defined by the client (i = 1) or is imposed by the model (i = 2 

and i = 3). This is because the three association mechanisms follow different ideas: For i = 1, the 

client can decide on any association individually, so it will define the set F ′ . For i = 2, when a 

new operation is added, the associations are partly to be decided on by somebody who has 
the right to edit the required profiles and partly implied by the model itself (the associations 
between profiles and FDOs are already given and cannot be changed). For i = 3, the set F ′ is fully 

determined by the model in advance, depending on the attributes specified in the operation 

record. A similar observation applies to part 7: For i = 1, the client will define the set O ′ , whereas 
for i = 2 and i = 3, the set O ′ is fully specified by the model. Such considerations need to be taken 

into account when assessing the quality measures. 

4.3 COMPARISON OF MEASURES 

We now compare the measures to evaluate the strengths and weaknesses of the different 
association models, starting with the quantitative measures. The overview of all measures is 
provided in Table 1. 

• Simplicity: Both the number of components and the number of attributes that are part 
of the association mechanism are measures for the simplicity of the model. If few 

attributes are involved, the information records (of FDOs, profiles, and operations) can be 

kept comparatively short. If additionally few components are involved, the models are 

easier to understand for potential users. Regarding components, we have C1 < C2 and 



15 C1 ≤ C3, while for C2 and C3 the following cases are possible: 

if |P ′| + 2 < |Adef |⎧< C3 3
⎪ 

C2 = C3 if |P ′| + 2 = |Adef |⎨ 3 

⎪
if |P ′| + 2 > |Adef

⎩> C3 3 | 

In addition, there does not appear to be any general order of A1, A2 and A3, for which we 

get the following estimates: 

A1 = ∑ |Of | ≤ ∑ |OF ′| = |FO ′||OF ′| 
f ∈ FO ′ f ∈ FO ′ 

A2 = |FO ′| + |PF ′ O ′| 
|FO ′|≥1 |PF ′ O ′| if |PF ′ O ′| < |FO ′|= |FO ′| (1 + 

|FO ′| 
) {
< 2|FO ′| 

≥ 2|FO ′| if |PF ′ O ′| ≥ |FO ′| 
|FO ′| |OF ′| 

A3 = ∑ bj + ∑ dj ≤ |FO ′||AF | + |OF ′||AO|
|FO ′| =

=|OF ′| |FO ′| (|AF| + |AO|) 
j=1 j=1 

With that, we get A2 ≤ A1 if |OF ′| ≥ 2, which should be the most common case and 

assumes that the number of profiles is relatively small compared to the number of FDOs. 
We also get A1 < A2 if |OF ′| < 2, which implies |OF ′| = 1 (since |OF ′| > 0). This means that 
each FDO is associated to exactly one operation. 

From A1 < A3, we get |OF ′| < |AF | + |AO|, which means that there are more attributes 
associated with FDOs and operations than there are operations associated to FDOs. 
Additionally, given |FO ′| ≤ |PF ′ O ′| and |AF | + |AO| = 2, we have A3 ≤ |FO ′|(|AF | + |AO|) = 

2|FO ′| ≤ A2. This is the case when each operation relies on few attributes for association. 

• Efficiency: All measures Qi, Ri and Si quantify the effort for a client to find certain 

FDO-operation-associations within the FDO ecosystem. To compare those measures, we 

note that all upper bounds are sharp upper bounds. 

Qi quantifies the effort to decide whether a certain FDO is associated to an operation. This 
is obviously smallest for record typing. For Q2 and Q3, the following cases are possible: 

≲ Q3 few operations are associated with f ’s profile for i = 2 
Q2 {

≳ Q3 otherwise 

Considering Ri, it is obvious that R1 is smallest. For the other two association models, the 

following two cases are possible: 

≲ R3 if (very) few operations are associated with F 
R2 {

≳ R3 otherwise 

For example, R2 ≲ R3 occurs when all f ∈ F have the same profile. For Si, we observe that 
S1 is smallest, while S2 also scales with the number of operations related to the given 

profile and S3 scales with the number of attributes in all operations, which is 
considerably larger. 

Overall, this shows that record typing is the best approach in terms of efficiency. Profile 

typing and attribute typing are less efficient in terms of measures Qi and Ri. However, the 

measure S3 reveals the high costs of attribute typing in comparison to the other models, 
because one has to iterate over all attributes of all operations in the FDO ecosystem to 

find all operations associated to one FDO. 

• Flexibility: Assuming that the number of FDOs associated to the new operation is much 

larger than the number of profiles (for i = 2) associated to this operation, it trivially follows 
that T1 ≳ T2 > T3 = 0. For Ui, obviously U1 > U2 = U3 = 0. Hence, in terms of required 

updates, attribute typing is most efficient, followed by profile typing. In comparison, 
record typing is relatively inefficient. 

Finally, we will comment on qualitative aspects, that is, granularity and client knowledge, as 
well as versatility. 

Blumenröhr et al. 
Data Science Journal 
DOI: 10.5334/dsj-2025-
022 



16 • Granularity and client knowledge: For record typing, each FDO can be associated with 

any operation as desired by the client. This is the most granular approach, as any 

combination of FDOs and operations is possible. However, for each newly defined FDO, the 

client who has introduced the FDO information record has to think of which operations to 

include into the information record. This requires both domain knowledge regarding the 

content information in the FDO, and knowledge about the association mechanism. The 

price for higher granularity is therefore that for each new FDO a careful individual 
inspection might be required to make an informed decision on operation association. 

Attribute typing has a slightly smaller granularity as not every FDO can be seamlessly 

associated to any operation. In turn, the association mechanism works out automatically, 
which means that clients just need to include all information they have available into the 

information record, without deciding for specific operations or attributes. However, in case 

a client has a specific operation in mind that was not automatically associated to the FDO 

but which one wants to be associated, one still needs to figure out which additional 
attributes to include into the FDO information record. 

Profile typing is the least granular approach. As each operation is associated to a whole 

class of FDOs, there is a need for many different profiles to be made available to the client 
to reach a granularity that is comparable with the other models. The advantage of profile 

typing is that the client just has to make an informed choice as to which profile to use, 
and then will be instructed which attributes are required in the information record due to 

the profile definition. Hence, one does not have to think at all about associating their FDO 

to any operations. 

• Versatility: In contrast to its high granularity, the overall versatility of record typing is 
considered to be the lowest, as each FDO-operation association must be explicitly 

declared to increase the possible processing options for an FDO. 

Profile typing has much greater versatility compared to record typing because a 

profile is typically reused several times to create a set of FDOs, and all of these FDOs 
automatically have the possible processing options defined by the operations associated 

with that profile. 

Compared to attribute typing, the versatility of profile typing is potentially lower because 

attribute definitions that constitute an association condition are typically reused across 
profiles and may occur in multiple target FDOs. These FDOs then automatically have the 

possible processing options defined by these operations. In this way, an operation can still 
be associated with any FDO whose profile contains the required set of attributes, and the 

association is not missed simply because the association between the operation and the 

profile was not explicitly made. In addition, an operation associated via profile typing may 

assume the presence of specific, not necessarily mandatory, attribute definitions in the 

profile. This could result in incompatibilities when executing the operation in case these 

attribute definitions were not instantiated for a particular FDO. With attribute typing, this 
cannot happen since the instantiation of all required attribute definitions is assured as 
part of the association process. 

Table 1 Overview of measures 
between Record, Profile, and 
Attribute Typing approaches 
and corresponding metrics. 

MEASURES RECORD 
TYPING (i=1) 

PROFILE 
TYPING (i=2) 

ATTRIBUTE 
TYPING (i=3) 

METRIC OVERVIEW 

Simplicity high moderate low-moderate C1 < C2, C1 ≤ C3 and, in 
general, C2 ≠ C3, A2 ≤ A1 in 
most cases, A3 ≤ A2 for few 
attributes 

Efficiency high moderate low Q1 < Q2 and Q2 ≲ Q3 for few 
operations in f ’s profile or 
Q2 ≳ Q3; R1 < R2 and 
R2 ≲ R3 for few operations 
being associated with FDOs or 
R2 ≳ R3; S1 < S2 < S3 
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Flexibility low moderate high T1 ≳ T2 > T3, U1 > U2 = U3 

Versatility low moderate moderate–high None 

Granularity and 
Required Client 
Knowledge 

high low low–moderate None 



17 Blumenröhr et al. 4.4 INTEROPERABILITY OF ASSOCIATION MODELS 

In contrast to the other quality indicators, we do not define specific metrics to quantify 

different levels of interoperability, which is out of scope for this work. Instead, we describe 

the implications for interoperability of FDOs and their operations by the compatibility of the 

introduced association models. 

Interoperability of FDO operations refers to the ability to perform consistent, standardized 

operations on FDOs across different systems and platforms, ensuring that actions such as 
accessing, processing, or transforming the objects can be executed reliably and requested 

uniformly by a client, regardless of the environment. From our point of view, different association 

models should therefore be consistent and compatible with respect to a standardized FDO type 

system that utilizes one or more typing mechanisms. 

This ensures that when an FDO is accessed or manipulated across different platforms, its 
type definitions and associated operations are consistently interpreted and executed. The type 

system provides a common language for using the standardized structure of FDOs based on 

one or more typing mechanisms, enabling seamless interaction between systems. Regardless of 
which typing mechanisms are implemented within a service, it is critical that all clients accessing 

an FDO obtain the same set of associated operations independent from the underlying model. 

Profiles are essential for this as they provide a minimal, standardized metadata structure for 
all FDOs. Because all association models for FDO Operations are expected to work with either 
a profile, profile attributes (also operations that are specified in the record), or a combination 

of both, they maintain a basic level of compatibility. Different association models using either 
record, profile or attribute typing can therefore be applied to the same FDO since the type 

system serves as a common language that allows different models to ‘understand’ which 

operations are valid. This also means that regardless of whether a simple or complex association 

model is used, the kernel metadata ensures that at least a core set of operations can be 

applied universally. 

4.5 IMPLEMENTATION CONSIDERATIONS 

Based on the results of our comparative evaluation and considering the approach of modeling 

the different association models using directed graphs, we conclude that implementations 
such as described in section 3.2.1–3.2.3 would highly profit from storing the interconnected 

components and the rules of each association model in proper graph data structures. This 
way, the assessment of the information about associations as described by the metrics is done 

once at ingestion time and stored as vertices and nodes according to the model, yielding the 

structure as illustrated in Figure 6. The repetitive procedures described by the quality indicators 
and quantified by their metrics are then facilitated. For example, assessment about which 

operations are associated with a given FDO and vice versa can be performed with simple graph 

queries. More complex procedures, such as is the case for attribute typing (cf. S3), could be also 

compensated this way by caching and integrating rules for inferring information. This could 

take place on the level of the object entities, as well as on the level of the services which store 

additional information about some components, for example the profiles. 

5 CONCLUSIONS 

In this paper, we defined and assessed multiple modeling approaches for associating FAIR 

Digital Objects with their operations through different typing mechanisms based on three 

example implementations. Our analysis underlines that each model—record typing, profile 

typing, and attribute typing—has distinct advantages and trade-offs for FDO ecosystems 
concerning simplicity, efficiency, flexibility, versatility, and granularity in conjunction with 

required client knowledge. While record typing offers simplicity and a high granularity, profile 

typing and attribute typing provide enhanced flexibility, versatility and few required client 
knowledge. Our findings also indicate that these association models are so far compatible 

with each other that a particular FDO entity could incorporate all approaches at the same 

time. This is also relevant with respect to interoperability between different FDO ecosystems. 
Ultimately, adopting an association model will depend on the specific requirements of the 

data environment, including client expectations and computational constraints. Future work 
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18 will need to consider how to manage FDO ecosystems at scale and which technologies are 

most suitable for implementing different models, ensuring a robust foundation for machine-
actionable data infrastructures. 
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