
A Comparative Analysis of
Modeling Approaches for
the Association of FAIR
Digital Objects Operations

NICOLAS BLUMENRÖHR

JANA BÖHM

PHILIPP OST

MARCO KULÜKE

PETER WITTENBURG

CHRISTOPHE BLANCHI
SVEN BINGERT

ULRICH SCHWARDMANN

*Author affiliations can be found in the back matter of this article

ABSTRACT

The concept of FAIR Digital Objects represents a foundational step towards realizing

machine-actionable, interoperable data infrastructures across scientific and industrial
domains. As digital spaces become increasingly heterogeneous, scalable mechanisms
for data processing and interpretability are essential. This paper provides a comparative

analysis of various typing mechanisms to associate FAIR Digital Objects with their
operations, addressing the pressing need for a structured approach to manage

data interactions within the FAIR Digital Objects ecosystem. By defining and

examining three core models of typing mechanisms—record typing, profile typing,
and attribute typing—this work evaluates each model’s quantitative quality indicators,
using mathematical measures, and qualitative aspects. In particular, models are

quantitatively evaluated with respect to their simplicity, efficiency, and flexibility,
as well as being qualitatively assessed with respect to granularity, required client
knowledge, and versatility, thereby shedding light on their strengths, limitations,
and interoperability. With this assessment, our objective is to offer insights for the

adoption of FDO frameworks that enhance data automation and promote the seamless
exchange of digital resources across domains.

RESEARCH PAPER

CORRESPONDING AUTHOR:
Nicolas Blumenröhr
Karlsruhe Institute of
Technology, Scientific
Computing Center, Germany

nicolas.blumenroehr@kit.edu

KEYWORDS:
FAIR Digital Objects; Metadata;
FAIR Principles; Object-
Oriented Programming;
Machine-Actionability; Type
System

TO CITE THIS ARTICLE:
Blumenröhr, N., Böhm, J., Ost,
P., Kulüke, M., Wittenburg, P.,
Blanchi, C., Bingert, S. and
Schwardmann, U. (2025)
A Comparative Analysis of
Modeling Approaches for the
Association of FAIR Digital
Objects Operations. Data
Science Journal 24: 22,
pp. 1–19. DOI: https://doi.org/
10.5334/dsj-2025-022

https://orcid.org/0009-0007-0235-4995
https://orcid.org/0009-0004-9802-113X
https://orcid.org/0000-0002-7198-0566
https://orcid.org/0000-0003-0611-2567
https://orcid.org/0000-0003-3538-0106
https://orcid.org/0000-0003-2277-5176
https://orcid.org/0000-0001-9547-1582
https://orcid.org/0000-0001-6337-8674
mailto:nicolas.blumenroehr@kit.edu
https://doi.org/10.5334/dsj-2025-022
https://doi.org/10.5334/dsj-2025-022

2 1 INTRODUCTION

There is a growing trend in both science and industry to try to connect previously isolated

domains, driven by the growing complexity of modern systems and the demand for
interoperability. Hence, it becomes increasingly important to develop common approaches for
automated acquisition, interpretability, and processing of digital data that can be considered

digital resources (European Commission et al., 2021; Jeffery et al., 2021; Wilkinson et al., 2016).
Processing very large, heterogeneous, and diverse data sets from different domains using the

existing sets of incompatible APIs applicable to those data sets is simply not possible (Soiland-
Reyes, Goble, and Groth, 2024). However, it is widely agreed that the future of data processing

must be highly automated to cope with the increasing amounts of digital resources that
are of great importance for meeting the requirements of the UN Sustainable Development
Goals (Madavarapu et al., 2024). A foundational infrastructure that provides a common and

more automatable approach to discovering and executing operations on data could have

the same impact on data processing that the Internet and Web technologies have had

on communication and multimedia information exchange (Schultes and Wittenburg, 2019;
Wittenburg and Strawn, 2018). This could lead to large and necessary advances in scientific

discovery, and industrial efficiency and sustainability.

The FAIR Digital Objects (FDOs) concept describes how such an infrastructure could be

realized by representing digital resources of any type in a way that enables automated

processing (Blumenröhr et al., 2025; Schultes and Wittenburg, 2019; Smedt, Koureas, and

Wittenburg, 2020). It does so by implementing the FAIR Principles (Wilkinson et al., 2016),
which provide guidelines for better data management and stewardship, using the Digital
Object framework (Kahn and Wilensky, 2006). While different implementation strategies
for FDOs exist, they all aim towards an automated processing by the machine-actionable

characteristics of an FDO that is enabled by operations. An operation will in general be

associated with an FDO by its typing mechanism and may be executed on different FDO

levels, i.e., the metadata or the bit sequence of the digital resource (Blumenröhr et al., 2025).
Operations may range from basic Create, Read, Update and Delete (CRUD) operations to more

advanced operations and can be implemented using various technologies. However, the exact
specification of a type system for FDOs that enables a mechanism to associate the objects
with applicable operations is not yet fully scoped (Blumenröhr et al., 2025; Soiland-Reyes,
Goble, and Groth, 2024). At this point, there exist different views and implementations for
associating FDOs and operations by typing. In fact, having multiple approaches is desirable

as there may not be a one-size-fits-all solution. Nevertheless, to ensure an interoperable

ecosystem for FDOs, it is important to assess if and how these approaches are compatible

with each other. Providing a structured analysis of these association models will support
the adoption of FDOs by different communities. Associating FDOs with their operations is
seen as the missing step in data processing automation by machine-actionability. Formalized

type specifications and user intentions paired with formalized reuse conditions will be key in

this regard.

In this work, we define and provide an assessment of typing mechanisms for associating FDOs
with their operations based on different conceptual data models. We describe each data model
along with an implementation example, and comparatively evaluate their characteristics with

respect to these typing mechanisms. Based on the evaluation, we discuss the results in the

larger context of FDO processability and perspectives for communities that want to adopt
the concept.

2 BACKGROUND

2.1 FOUNDATIONS OF FDOS AND THE CORE MODEL

FDOs are persistent entities that bundle information for FAIR processing of a bit sequence

including different kinds of metadata. They are referenced by a Persistent Identifier (PID),
fulfill FAIR criteria in their core mechanisms, and can be protected against misuse in

various dimensions (Smedt, Koureas, and Wittenburg, 2020). In the FDO core model given

by (Blumenröhr et al., 2025), each FDO represents a basic structure that allows for different
configurations, i.e. configuration types (Lannom, Peters-von Gehlen, et al., 2022), and has the

following characteristics:

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

3 • A Handle PID will be resolved into an FDO information record that contains the Kernel
Information.

• The Kernel Information describes the FDO core metadata attributes, such as its data type,
location and additional metadata references.

• The Kernel Information is structured as a set of attributes expressed as a set of key-value

pairs, aggregated by a Kernel Information Profile (Weigel et al., 2019) that the information

record must conform to.

• For compatibility reasons, only a minimal set of attributes are specified in the Kernel
Information Profile as also proposed by the FDO Forum1 and the Research Data Alliance2.

• Each attribute included in the profile must be defined and registered in a public registry

according to the specification of PID-Information Types (PITs) (Schwardmann, 2017),
making it machine-interpretable.

• It is actionable through a set of operations that are associated with the Kernel
Information via a typing mechanism.

This minimal definition of the FDOs follows the original idea of the Internet, which defines a basic

package structure for information transfer and allows making use of a communication protocol
for FDOs, the Digital Object Interface Protocol (DOIP) (DONA Foundation, 2018). FDOs can

represent bit sequences with different kinds of content, such as data, metadata, configurations,
semantic assertions, software, etc. As illustrated in Figure 1, due to their conceptual core

model, FDOs have the potential to be used as a basic interoperability layer to connect different
types of repositories and data spaces (Curry, Scerri, and Tuikka, 2022). For further technical
details on FDOs, see the FDO Overview (Anders et al., 2023a), and the FDO Requirement
Specifications (Anders et al., 2023b). Note that the term profile is used interchangeably with

the term Kernel Information Profile in the subsequent sections.

Figure 1 The conceptual FDO
core model.

2.2 PROBLEM DESCRIPTION

Several works on FDO implementations have described the theoretical applicability of FDO

operations, e.g. (Blanchi, Gebre, and Wittenburg, 2022; Blumenröhr et al., 2025; Islam, 2023;
Lannom, Koureas, and Hardisty, 2020) or have even implemented specialized systems that
enable the execution of operations in their FDO ecosystem, e.g. (Blumenröhr and Aversa, 2023;

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

1 https://fairdo.org/.

2 https://www.rd-alliance.org/.

https://fairdo.org/
https://www.rd-alliance.org/

4 Islam et al., 2023). However, to the best of our knowledge, a set of generic mechanisms for
associating these operations with FDOs via a set of rules, i.e., a type system, in compliance with

the description of the original concept, has not been worked out yet. This makes it hard to assess
and to reproduce these use-case specific operation frameworks.

The authors of this work have developed typing mechanisms to associate FDOs and operations
within their organizations, which were extensively discussed in the frame of the FDO Forum. At
this point, there exist some reference implementations for these mechanisms as described in

the following sections, but no detailed definition of their data models and how these compare

to each other. We therefore see this paper as a step forward in assessing these association

models and providing a baseline for implementing (inter-)operable FDO ecosystems.

3 MODELS FOR ASSOCIATING FDOS TO THEIR OPERATIONS

In this section, we first describe the different modeling approaches for the association of FDOs
with operations and their underlying typing mechanisms. We assume that an FDO is specified

according to the core model described in section 2.1. We first elaborate on the general idea

of the typing mechanisms that we define as part of a type system for FDOs, and second on

the rules of how they integrate with different FDO components. These typing mechanisms
are related to well-known typing principles in computer science and are finally incorporated

in each association model. Technical implementation details for these association models are

not considered.

In the second part of this section, we go through several application examples that use these

different association models based on the typing mechanisms.

3.1 TYPING MECHANISMS

The problem with the terms ‘type’ and ‘typing’ is that they are generic, and often have different
definitions across disciplines and technologies. This work does not aim to provide an exhaustive

description of these terms but it does require a more concrete description in the context of
FDOs. It can be said at this point that many of the terms employed relate to ideas from the

field of Object-oriented Programming (OOP), of which relations to other principles such as
abstraction and encapsulation have already been described by the work of (Blumenröhr et al.,
2025; Schultes and Wittenburg, 2019). The next step is to infer mechanisms for associating

operations on the basis of abstraction and encapsulation provided by FDOs. It is important to

note that we consider the analogy between OOP and FDOs only on an abstract, conceptual
level, whilst the implementation details of FDOs are a different aspect. The following terms also

found in OOP are therefore defined in the context of FDOs as the following:

• Abstraction and Encapsulation: FDOs pack data and metadata into a single unit by

definition, encapsulating internal details. The interface to the FDO is given by attributes
that describe possible interactions. The set of attributes is given by its profile. The profile

itself is therefore a class. It is an abstraction of all FDOs that satisfy the profile

requirements.

• FDO Type: a characterization of an FDO through the set of its typed attributes (e.g. using

PITs) that are bundled in a profile and are subject to syntactic and semantic specifications.

• Type System: inspired by the work of (Pierce, 2002), we define this as a set of rules for
validating how FDOs are typed and associated with a set of operations by one or more

typing mechanisms.

• Typing Mechanism: the exact procedure to determine if and how an operation is
associated with a particular FDO via its kernel information elements, i.e., key-value pairs of
typed attributes and profile.

The typing mechanisms to associate operations with FDOs are described below. The details and

relations of these mechanisms to principles known from OOP are illustrated in Figure 2.

With respect to the association approach, there are two obvious possibilities. The first is to

extend the FDO interfaces and to include operations as attributes in the FDO record by changing

the profile (operation association to FDO). The other is to leave the interfaces of FDOs unchanged

and to describe requirements for the interfaces of the operation representation (FDO association

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

5 to operation). This can be represented as relations between operations and types (i.e., typed

attributed using PITs) in a dedicated type system.

Even though object association to operations is also possible within OOP, operation association

to objects of classes is encouraged there as part of the encapsulation. Operations behind

Representational State Transfer (REST) services are also usually associated to the objects behind

their interfaces. Object association to operation is more commonly used in the context of media

types, in which the applicability of an operation is decided by the type of object. The type

encapsulates the internal complexity of both the object and the operation. This results in three

core mechanisms of typing that we detail in the following.

Figure 2 Typing Mechanisms.
The conceptual typing
mechanism to associate FDOs
and their operations in analogy
to OOP.

3.1.1 Record Typing

The most straightforward way of typing FDOs can be achieved by specifying an operation

directly in the information record of the FDO as a key-value pair using typed attributes, thereby

directly associating each operation with the individual object. The type is hereby purely defined

by the constellation of applicable operations. Conceptually, this is similar to the principle of
structural typing in OOP, in which the type of an object is determined by the methods it supports
at compile time rather than by its explicit class. This focuses on what the object can do rather
than what it is. All applicable operations are therefore also part of the attributes in the FDO

information record and are fixed at instantiation time of the object.

3.1.2 Profile Typing

Profile typing means that operations that are associated with an FDO are inferred from the

profile that is instantiated by this FDO and are therefore considered the type. Attaching the

operations to FDO profiles is possible because each FDO has a profile as a mandatory typed

attribute in its information record according to the kernel information requirements. This is
comparable to nominal typing in OOP in which an operation in the form of a method is bound

to a class and its name, meaning that it operates on instances of that class (objects) and has
access to the class’s attributes.

3.1.3 Attribute Typing

This typing mechanism considers the set of attributes in an FDO’s information record, such

that each operation is associated by the presence of one or more attributes that constitute

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

the type in dependency of these requirements. This also relates to duck typing in OOP with the

aspect that an object’s usability can also be determined by the presence of specific attributes
at runtime, rather than the object’s class. This works for FDOs because their typed attributes
refer to the specification of PITs, meaning that each element is unambiguously identified, has
a defined value space, is possibly associated with terms from controlled vocabularies, and

can be reused and recognized for all FDOs. In principle, the association can be determined

by considering one or more typed attributes, validating either only their key presence, or the

presence of specific key-value pairs.

3.2 IMPLEMENTATION EXAMPLES

The examples described in this subsection originate from different projects and organizations
the authors are involved in, using different types of data, technologies and service architectures.
We concentrate here on the association models and the essential workflow, also considering

information exchange between FDO services and the client side. Apart from a minimal
necessary description, we do not therefore provide technical details of each implementation

and the service components that are used in these projects. We also do not further explain the

details of how these operations are ultimately applied to the contents of the FDOs they are

associated with. For this, we refer to the references provided in each section. We also want to

point out that different complexity levels of these implementations are not necessarily related

to the complexity of the individual association model. These will be evaluated in section 4.
However, according to the FDO core model, each FDO in these examples is registered at—and is
thus resolvable via—the Handle Registry, has a typed information record, and complies to one

of the known FDO configuration types.

3.2.1 Record Typing in Interactive Computing Environments

This example considers a simple FDO information record that represents a catalog containing

links to various climate model simulations described by domain-specific metadata key-value

pairs. FDO-related information is statically implemented in the record. Hence, Figure 3 lays out
how the implementation of an association mechanism for operations via record typing works
in principle. The diagram shows a workflow illustrating the interaction between an FDO and

a client using a computational environment, i.e., a Jupyter Notebook, to retrieve predefined

operations (here labeled as operation 1 for opening the catalog and operation 2 for reading the

catalog) that are bundled in the information record among other metadata required to execute

the operation, such as the content type, the reference to the bit sequence, or other metadata.

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-

6

022

Figure 3 Record typing
example. The conceptual
workflow for interacting with
an FDO based on record typing.

Depending on the FDO service, a client can either request the list of associated operations or
directly retrieve them from the FDO’s information record. In this example, these operations are

a specification of code that is executable on the client side.

From a technical implementation perspective, the information record itself contains a set
of operations that are in principle relevant to any object conforming to the content-type it
represents. Note that these FDOs cannot dynamically change their operations or substitute

them at runtime. The operations are fixed and cannot vary based on different FDO subtypes.
The Jupyter Notebook can be found at (Kulüke, 2025).

7 3.2.2 Profile Typing with Multiple Registries

Within the FDO One project,3 the focus is on providing basic operations for FDOs to build up

a functional FDO ecosystem, e.g. CRUD operations (create and delete an FDO, get or update

the (meta)data of an FDO) or copying an FDO and moving a distributed FDO from one storage

location (data service) to another. For these types of operations, domain-specific attributes
and content-types of bit sequences are irrelevant. Rather, the structure of the FDO itself is of
importance, for example, whether it represents zero, one, or multiple (meta)data bit sequences
and how those are stored. This information is determined by the FDO profile. Hence, the profile

typing mechanism is used to associate those operations to FDO profiles. In particular, each FDO

profile contains not only a list of mandatory and optional attributes which must be present in an

FDO information record, but also a list of operations that can be applied to any FDO complying

with this specific FDO profile. Profiles are registered in the profile registry, which is based on a

Data Type Registry.4

As described in Figure 4, to find operations associated with an FDO, a client may retrieve the

profile (either directly or through a software component) and receive a list of PIDs identifying

operations that are associated to this FDO. The operations, in turn, are registered in the

operation registry together with all necessary execution information5. For further reading and

technical details of the FDO One testbed implementation, we refer to (fairdo, 2025).

Figure 4 Profile typing
example. The conceptual
workflow for interacting with
an FDO based on profile typing.
Irrespective of the service
architecture that is used to
implement and execute
operations, such as the three
registries in this example, the
FDO service must infer the
association between the
profile of an FDO and its set of
operations.

3.2.3 Attribute Typing with Operation FDOs

To realize the attribute typing mechanism, an operation must be represented in a way that
allows it to be related to the attributes in the targeted FDO’s information record that represents
research data (i.e., labeled here as target FDO). This could be easily provided by representing

the operation itself as an FDO as well, which we label here as operation FDO. This follows the

concept’s generic approach that each type of bit sequence can be represented as an FDO. The

specific implementation of the operation is thus described in this operation FDO information

record, detailing its implementation, possible execution mechanism, and the type-association

requirements in the form of a typed attribute’s key-value pair.

An example of this modeling approach is illustrated in Figure 5, where a target FDO and

two operation FDOs are shown. Each operation FDO represents the implementation of the

underlying operation that is either applied to the bit sequence, i.e., operation 1 for schema

validation, or to the kernel metadata, i.e., operation 2 for license evaluation. The information

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

3 https://fdo-one.org.

4 https://typeregistry.lab.pidconsortium.net/.

5 Strictly speaking, in order to determine whether the above mentioned operations are executable on an FDO,
the technical capabilities of the data service where the FDO is stored also need to be taken into account. This is
because these types of operations do not just involve reading bit sequences, but potentially also require
registering new PIDs or manipulating FDO information records, which requires actions of the data service itself.
Therefore, a service registry is used to store which specific profiles and operations a data service supports.
However, describing these mechanisms in detail is beyond the scope of this paper.

https://fdo-one.org
https://typeregistry.lab.pidconsortium.net/

8 record of the operation FDO contains at least one key-value pair where the key expresses the

requiredInput and the value references the PIT that indicates applicability of the operation

to all FDOs that contain a typed attribute of this PIT in their information record. Depending

on these requirements, only the corresponding key of the referenced PIT, or the key and a

specific value in the form of a tuple (cf. operation 1) may be specified. This construction

enables a dynamic typing mechanism, in which operations are ‘aware’ of the traits an

FDO must have for their applicability to discover them at runtime. With respect to the

infrastructure, additional services that know how to interpret and validate these type-based

relations and subsequently execute the implemented operation, which is not detailed in this
work, will be required. For further reading and technical details of this example, we refer
to (Blumenröhr, 2025).

Figure 5 The conceptual
workflow for interacting with
an FDO based on attribute
typing. Irrespective of how the
operation is ultimately
performed (requested by the
service in this example), the
FDO service must infer the
association based on the
information record contents
and references of the target-
and operation FDOs.

4 MODEL EVALUATION AND DISCUSSION

To evaluate the different approaches for associating FDOs with operations based on the three

typing mechanisms, we embed the association approaches into a mathematical context by

modeling them as directed graphs (Section 4.1). Afterwards, a set of quality indicators is
defined that are inspired by the methods used in the domain of entity-relationship modeling

as described by (Moody, 1998) (Section 4.2). These quality indicators finally serve the purpose

of putting the different association models in relation to each other and evaluating their
advantages, disadvantages, and compatibility. To quantify the differences, we define metrics
for these quality indicators that are evaluated on each graph model separately. In addition, we

will also consider purely qualitative aspects.

However, in this work, we concentrate only on the comparison between the models rather than

providing absolute numbers for the implementation examples we have introduced, as these

are not relevant in the frame of a comparative analysis on the conceptual level. Furthermore,
the examples will also be briefly discussed with respect to implementation aspects, limitations,
and future work (Section 4.4).

4.1 MODELING THE ASSOCIATION MECHANISMS AS GRAPHS

To compare the association models not only qualitatively but also quantitatively, the three

association approaches need to be put into a mathematical framework. For a distinct
representation of all involved components, we model the association approaches first as
Entity-Relationship (ER) Models, based on the work of (Chen, 1976), and then as directed

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

9 graphs. This seems natural because associations between FDOs and operations are all based

on references pointing from one entity to another entity. Those entities might be FDOs,
operations, profiles (in the case of profile typing), or attribute definitions according to PITs
(in the case of attribute typing). Instances of attribute definitions, i.e., typed attributes,
are represented using the Attribute class in the ER model. The components of the ER

model are then converted into mathematical graph components such that entities and

their attributes (of the Attribute class) are represented as vertices, while relationships are

represented as edges. Relationships such as ‘FDO f contains attribute a in its information

record’ and ‘attribute a points to operation o’ directly translate into edges, while the

entities named above, including instances of attribute definitions, translate into vertices in

a graph. In this way, the ER model semantically specifies the components and structure

of each association model generically, whilst the corresponding graph details the actual
complexity to assess the number of elementary operations. This addresses especially the direct
relationships between attribute instances and other components via edges, which can only

be modeled implicitly in the ER diagram. This is further detailed in Definition 2 and visualized

by Figure 6.

For the rest of this section, we index our association models with i ∈ {1, 2, 3}, such that i = 1 refers
to record typing, i = 2 to profile typing, and i = 3 to attribute typing. In the following, we examine

each association model separately under the assumption that the whole FDO ecosystem purely

relies on a single association approach.

Definition 1 (Components). Let F be the set of all FDOs representing data, O the set of all
operations, P the set of all FDO profiles, and Adef the set of all attribute definitions (referring i
to PID-Information Types), in the whole FDO ecosystem. Attribute definitions are instantiated

by typed attributes, from now on denoted only as attributes, (e.g., in FDO, operation, or profile

information records) which are given by the set Ai. We denote the numbers of those quantities
by |F|, |O|, |P|, |Adef | and |Ai|, respectively. The set Ci = F ∪ O ∪ P ∪ Adef contains all components i i
of the i-th association model.

Attribute definitions determine a key for an attribute together with a set of restrictions on the

value of the attribute. Each attribute a = (a1, a2) ∈ Ai is represented by a tuple that consists of a

key a1 and a value a2. Two attributes a = (a1, a2), b = (b1, b2) ∈ Ai are considered to be the same

element (i.e., a = b) if and only if they have the same key-value-pair (i.e., a1 = b1 and a2 = b2)
and they are part of the same information record.

All components of the FDO ecosystem are uniquely identified by PIDs. Some components, such

as the set of profiles and the set of attribute definitions or attributes, depend on the examined

association approach. For example, attribute definitions might have different required keys and

restrictions on the values depending on the model. In addition, the content of the profiles might
differ according to the implementation and the chosen model. Hence, the set of attributes and

the set of profiles are indexed by i ∈ {1, 2, 3}. The FDOs and operations are considered to be the

same sets in all models (strictly speaking, we assume that there are bijective mappings Mij :
Fi → Fj and M ′ ij : Oi → Oj between FDOs from different models and operations from different
models, for i ≠ j).

Definition 2 (Entity Relationship and Graph Models). We define a simple ER and graph model
for the three association approaches. The ER model is the basis specifying the elements of the

set Ci as entities and their relationships, and the elements of the set Ai as attributes of these

entities. Furthermore, for i ∈ {1, 2, 3}, we denote Gi = (Vi, Ei) as the graph Gi, which consists of
vertices vi ∈ Vi that are connected by edges ei = {xi, yi} ∈ Ei with xi, yi ∈ Vi.

• i = 1: For record typing, each FDO is directly associated with an operation via an attribute

within the information record. Hence,

V1 = F ∪ A1 ∪ O,

E1 = {{f , a} : FDO f ∈ F has the attribute a ∈ A1}

∪ {{a, o} : attribute a ∈ A1 references operation o ∈ O}.

• i = 2: In terms of profile typing, each FDO references a profile via an attribute in the

information record. In turn, an attribute in the profile information record references an

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

10 FDO operation. Therefore,

V2 = F ∪ A2 ∪ P ∪ O,

E2 = {{f , a} : FDO f ∈ F has the attribute a ∈ A2}

∪ {{a, p} : attribute a ∈ A2 references profile p ∈ P}

∪ {{p, a} : profile p ∈ P has the attribute a ∈ A2}

∪ {{a, o} : attribute a ∈ A2 references operation o ∈ O}.

• i = 3: For attribute typing, each operation FDO implicitly references a set of attributes
within an FDO information record via their attribute definition and using attributes in the

operation FDO. Hence,

V3 = F ∪ A3 ∪ Adef ∪ O,3

E3 = {{o, a} : operation o ∈ O has the attribute a ∈ A3}

∪ {{a, adef } : attribute a ∈ A3 references attribute adef ∈ Adef }3

′∪ {{a , adef } : attribute a ′ ∈ A3 references attribute adef ∈ Adef }3

′∪ {{a , f } : attribute a ′ ∈ A3 is contained in FDO f ∈ F}.

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

Figure 6 Entity Relationship
(a-c) and corresponding
exemplary graph
representations (d-f),
modeling the three association
approaches based on the
typing mechanisms.

(a)

(b)

(c)

(d)

FDO

FDO Attribute

(a1,a2)

instantiation
Attribute
Definition
(a1=b2)

M N K
Operation

L
reference

Operation
Attribute
(b1,b2)

(e)

(f)

11 References point from the originating entity to the referenced entity. Note that references from

attributes to attribute definitions in i = 3 arise from the instantiation itself. Consequently, the

edges {x, y} ∈ Ei are naturally ordered and may be modeled as directed edges (see Figures 6d-f
where references are explicitly displayed as directed edges). However, for any directed edge

from x ∈ Vi to y ∈ Vi, there will never be another directed edge from y to x due to model
definition. Hence, there is no need to differentiate between the orientation of edges, so we

will work with simple graphs and adopt the notation as in Definition 2.

Figure 6 visualizes Definition 2. The ER models (labels a, b, c) constitute the generic constellation

of the different typing mechanism models. The three graphs (labels d, e, f) derived from these

ER models, respectively, illustrate an exemplary excerpt of a potential FDO ecosystem. They all
contain the same FDOs f1, … , f4, the same operations o1, … , o5 and represent the same set of
associations: f1 is associated with o1, o2 and o3, while f2 and f3 are both associated with o3, and

f4 is associated with o5.

For record typing, each FDO might have several attributes for operation association, which

contain the same key (i.e., a1 = b1 = c1 = d1 = e1 = f1). The attributes directly reference an

operation via their value. In this example, attributes c, d, and e all have the same value (i.e.,
c2 = d2 = e2) because they refer to the same operation. Each path connecting an FDO on the left
side with an operation on the right side represents one FDO-operation-association.

In terms of profile typing, each FDO has exactly one attribute containing the profile reference.
Those attributes have the same keys (i.e., a1 = b1 = c1 = d1). If two FDOs have the same profile,
their attributes point to the same profile in the graph (i.e., b2 = c2). Each profile contains exactly

one attribute (e1 = f1 = g1) to specify a list of operations as its value. Similarly to record typing,
each path from left to right represents one FDO-operation-association.

For attribute typing, each target FDO may contain multiple attributes. Similarly, each operation

FDO may contain multiple attributes, with keys being all tantamount (i.e., h1 = i1 = j1 = k1 = l1 =

m1 = n1). The attributes in the operation FDO information record reference attribute definitions
that are instantiated by attributes in the target FDO information record (i.e., in this example, we

have h2 = a1, i2 = b1, j2 = d1, and so on). Note that this model is a simplification of attribute typing

because we just consider the case that attributes in the operation record match with attributes
in the FDO information record if the attribute in the FDO information record is present (i.e., has
the desired key). We do not consider possible restrictions on the allowed values of attributes in

the FDO information record and the resulting impact on granularity.

4.2 EVALUATION OF QUALITY INDICATORS AND METRICS

We examine quantitative quality indicators (simplicity, efficiency, flexibility) and qualitative

aspects (granularity, required client knowledge and versatility). For the quantitative quality

indicators, we define simple mathematical measures that are separately evaluated for each

model under the assumption that the whole FDO ecosystem relies purely on a single

association approach.

Throughout this work, we use big O notation to assess computational complexity of the

conceptual models. Note that we generally make no assumptions about the data structure used

in an implementation in which the information concerning the assessments would be stored.

Quantitative Quality Indicators

Simplicity refers to how complex it will be for a client to handle an FDO ecosystem that applies a

given association model with respect to its structure. This can be measured using metrics such

as the number of components involved and the number of their relations.

Efficiency takes into account how complex it will be to find all operations that are associated

to an FDO or to assess whether a certain FDO is associated to a given operation. This can be

measured using metrics such as the number of edges in the graph that make up an association.

Flexibility as a quality indicator relates to the question how many active modifications are

required when new components are added to an existing FDO ecosystem that applies a

particular association model. This can be measured using metrics such as the number of
updates that must be performed when a new association between an FDO and an operation

is made.

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

12 Blumenröhr et al. Qualitative Aspects
Data Science Journal
DOI: 10.5334/dsj-2025-
022

The qualitative aspects we consider are the granularity of the association models in comparison

to the amount of client knowledge that is required to add the desired associations to a new FDO.
In addition, the versatility of the models is discussed, which considers the possible processing

options of an FDO through its associated operations in relation to the aspects imposed by

efficiency and flexibility.

Definition 3. The following notation is introduced to evaluate the quantitative measures (see

Theorem 5).

1. For any non-empty subset F ′ ⊆ F, OF ′ is the set of all operations that are associated with at
least one FDO f ∈ F ′ . For the set containing a single element F ′ = {f }, we write Of instead of
O{f }. For profile typing (i = 2) and a non-empty subset of profiles P ′ ⊆ P, we define the set of
all operations that are referenced by at least one profile p ∈ P ′ as OP ′ .

2. For any set O ′ ⊆ O, FO′ is the set of all FDOs that are associated with at least one operation

o ∈ O ′ . For the set containing a single element O′ = {o}, we write Fo instead of F{o}.

3. For f ∈ F and o ∈ O, let Af and Ao be the sets of all attributes in the information records of
FDOs and operations, respectively.

4. Finally, the following definition only holds for i = 2: For subsets F ′ ⊆ F and O ′ ⊆ O, we define

PF ′ as the set of all profiles referenced by at least one FDO f ∈ F ′ , PO ′ as the set of profiles
associated with at least one operation o ∈ O ′ , and PF ′ O ′ = PF ′ ∩ PO ′ as the set of all profiles
that are part of at least one FDO operation association between the elements of the set of
F ′ and O′ .

Note that the total number of FDO-operation-associations is represented by ∑ f ∈F |Of | =
∑ |Fo| irrespective of the association o model. ∈O

Definition 4 (Measures for Quantitative Quality Indicators). For i ∈ {1, 2, 3}, we define the

following metrics to assess the quality indicators:

1. Ci is the total number of components (see Definition 1) in the FDO ecosystem that are

(potentially) part of each association mechanism. This includes not only those FDOs,
operations, attribute definitions and profiles that are actually part of at least one

FDO-operation-association, but also the total sets of the components that might
be involved.

2. Ai is the total number of instantiated attributes that are present in FDO, profile, or
operation information records, which are actually part of the association mechanism.
Here, attributes are counted multiple times if the same key-value pair is present in

multiple information records. Both Ci and Ai are indicators of the space complexity for
each model.

3. Qi is is an upper bound on the time complexity to decide whether an FDO f ∈ F is
associated to an operation o ∈ O.

4. Ri is an upper bound on the time complexity to find all FDOs that are associated with a

single operation.

5. Si is an upper bound on the time complexity to find all operations associated with a single

FDO.

6. Ti is an upper bound on the time complexity to perform all required updates in the FDO

ecosystem to associate a new operation with a set F ′ ⊆ F of FDOs.

7. Ui is an upper bound on the time complexity to perform all required updates in the FDO

ecosystem to associate a new FDO with a set of operations O ′ ⊆ O.

Theorem 5 (Evaluated Measures): The measures specified in Definition 4 are evaluated to the

following quantities:

1. C1 = |F| + |O| + 1,

C2 = |F| + |O| + |P ′| + 2,

C3 = |F| + |O| + |Adef |.3

13 Blumenröhr et al. 2. For i = 3, let b1, … , b|FO ′| ∈ ℕ be the number of attributes being part of the association Data Science Journal
mechanism for the FDOs f1, … , f|FO ′|, and let d1, … , d|OF ′| ∈ ℕ be the number of attributes DOI: 10.5334/dsj-2025-

022 taking part in the association mechanism for each operation o1, … , o|OF ′|.

A1 = ∑ |Of |,
f ∈ FO ′

A2 = |FO ′| + |PF ′ O ′|,

|FO ′| |OF ′|

A3 = ∑ bj + ∑ dj.
j=1 j=1

3. Q1 = O(|Af |),

Q2 = O(|Af | + |OP ′|),f

Q3 = O(|Af | + |Ao|).

4.
R1 = O (∑ |Af |) ,

f ∈ F

R2 = O (∑ |Af | + ∑ |O{p}|) ,
f ∈ F p∈PF ′

R3 = O (∑ |Af | + |Ao|) .
f ∈ F

5. S1 = O(|Af |),

S2 = O(|Af | + |OP ′|),f

S3 = O (|Af | + ∑ |Ao|) .
o∈O

6. T1 = O(|F ′|),

T2 = O(|P{o}|),

T3 = 0.

7. U1 = O(|O ′|),

U2 = 0,

U3 = 0.

Proof. 1. According to Definition 1, the components involve the sets F, O, P and Adef .i
However, we just count those components that are potentially taking part in the

association mechanism. For i = 1, this is the set of FDOs, the set of operations, and a single

attribute definition (as all FDOs reference their operations via the same attribute key). For
i = 2, there are two attribute definitions involved in the association mechanism, one to

reference an FDO profile in all FDO information records, and one to reference a list of
operations in all profile information records. For i = 3, there are no restrictions on the set of
attributes that are being used in the FDO information records. Hence, all attribute

definitions Adef are potentially taking part in the association mechanism. 3

2. Counting the number of attributes being part of the association mechanism means to

count all edges with the label ‘has attribute’ as illustrated in Figure 6 that are part of at
least one FDO-operation association. For i = 1, each association corresponds to one

attribute, such that the number of attributes equals the total number of associations. For
i = 2, each FDO contains exactly one attribute to be connected to a profile (totaling |FO ′|
attributes), and each profile has exactly one attribute that connects it to a set of
operations (totaling |PF ′ O ′| attributes). For i = 3, the equation follows by definition of bj
and dj.

14 Blumenröhr et al. 3. Let f ∈ F be any FDO and o ∈ O be any operation. For i = 1, a client would need to search Data Science Journal
DOI: 10.5334/dsj-2025-
022

the whole FDO information record for the attribute containing the reference to o, taking

time O(|Af |). For i = 2, one needs to find the profile p in the FDO information record within

time O(|Af |). Since accessing the profile and its list of operations highly depends on the

implementation but is not directly relevant for the comparative analysis, we assume

access in constant time. Finally, the list of operations needs to be searched for the

reference to o, taking time O(|O{p}|). For i = 3, additionally, all attributes in the operation

information record need to be found that determine the association, which is done in

O(|Ao|). Afterwards, each of the associations that were found need to be matched against
the attributes in the information record (after converting either the attributes in the FDO

or the attributes in the operation FDO into a suitable format).

4. For i = 1, one has to search each FDO information record in the FDO ecosystem for its
operations, which is O(∑f ∈ F |Af |). For i = 2, similar time is required to find all profiles PF ′ .
A profile has one attribute containing a list of operations, and we assume that each list of
operations can be accessed in constant time. Furthermore, checking whether those lists
contain the operation requires reading the whole operation list within time O(∑ p∈P ′ |O{p}|).

F

For i = 3, first find all operation attributes and convert them into a suitable format within

time O(|Ao|). Then, read all attributes in all FDOs and check whether they match the

operation attributes, taking time O(∑f ∈ F |Af |).

5. For all i ∈ {1, 2, 3}, it is required to read all attributes in the information record. For i = 2,
one then accesses the profile p within O(1) and the list of operations also within O(1).
Reading all elements from that list takes time O(|O{p}|). For i = 3, the FDO information

record is converted into a suitable format (within O(|Af |)). Then, each operation FDO has
to be checked against the target FDO, which requires time O(∑ |Ao|). o∈O

6. For i = 1, relating a new operation to the set F ′ requires one to add one attribute in each

FDO information record, yielding O(|F ′|) updates in total. For i = 2, the new operation

needs to be added to all profiles that it should be applicable to, which are |P{o}|. For i = 3,
no updates need to be done because the set F ′ is implicitly defined by the attributes in the

operation FDO.

7. To associate a new FDO with a set of operations O ′ , |O ′| new attributes need to be added

to the FDO information record for i = 1. In the case of i = 2, no updates need to be

performed because the new FDO is required to have a profile anyway and the profile

implicitly defines the set O ′ . For i = 3, no updates need to be performed with the same

reason as detailed in 6.

Note that the set F ′ in part 6 is defined by the client (i = 1) or is imposed by the model (i = 2

and i = 3). This is because the three association mechanisms follow different ideas: For i = 1, the

client can decide on any association individually, so it will define the set F ′ . For i = 2, when a

new operation is added, the associations are partly to be decided on by somebody who has
the right to edit the required profiles and partly implied by the model itself (the associations
between profiles and FDOs are already given and cannot be changed). For i = 3, the set F ′ is fully

determined by the model in advance, depending on the attributes specified in the operation

record. A similar observation applies to part 7: For i = 1, the client will define the set O ′ , whereas
for i = 2 and i = 3, the set O ′ is fully specified by the model. Such considerations need to be taken

into account when assessing the quality measures.

4.3 COMPARISON OF MEASURES

We now compare the measures to evaluate the strengths and weaknesses of the different
association models, starting with the quantitative measures. The overview of all measures is
provided in Table 1.

• Simplicity: Both the number of components and the number of attributes that are part
of the association mechanism are measures for the simplicity of the model. If few

attributes are involved, the information records (of FDOs, profiles, and operations) can be

kept comparatively short. If additionally few components are involved, the models are

easier to understand for potential users. Regarding components, we have C1 < C2 and

15 C1 ≤ C3, while for C2 and C3 the following cases are possible:

if |P ′| + 2 < |Adef |⎧< C3 3
⎪

C2 = C3 if |P ′| + 2 = |Adef |⎨ 3

⎪
if |P ′| + 2 > |Adef

⎩> C3 3 |

In addition, there does not appear to be any general order of A1, A2 and A3, for which we

get the following estimates:

A1 = ∑ |Of | ≤ ∑ |OF ′| = |FO ′||OF ′|
f ∈ FO ′ f ∈ FO ′

A2 = |FO ′| + |PF ′ O ′|
|FO ′|≥1 |PF ′ O ′| if |PF ′ O ′| < |FO ′|= |FO ′| (1 +

|FO ′|
) {
< 2|FO ′|

≥ 2|FO ′| if |PF ′ O ′| ≥ |FO ′|
|FO ′| |OF ′|

A3 = ∑ bj + ∑ dj ≤ |FO ′||AF | + |OF ′||AO|
|FO ′| =

=|OF ′| |FO ′| (|AF| + |AO|)
j=1 j=1

With that, we get A2 ≤ A1 if |OF ′| ≥ 2, which should be the most common case and

assumes that the number of profiles is relatively small compared to the number of FDOs.
We also get A1 < A2 if |OF ′| < 2, which implies |OF ′| = 1 (since |OF ′| > 0). This means that
each FDO is associated to exactly one operation.

From A1 < A3, we get |OF ′| < |AF | + |AO|, which means that there are more attributes
associated with FDOs and operations than there are operations associated to FDOs.
Additionally, given |FO ′| ≤ |PF ′ O ′| and |AF | + |AO| = 2, we have A3 ≤ |FO ′|(|AF | + |AO|) =

2|FO ′| ≤ A2. This is the case when each operation relies on few attributes for association.

• Efficiency: All measures Qi, Ri and Si quantify the effort for a client to find certain

FDO-operation-associations within the FDO ecosystem. To compare those measures, we

note that all upper bounds are sharp upper bounds.

Qi quantifies the effort to decide whether a certain FDO is associated to an operation. This
is obviously smallest for record typing. For Q2 and Q3, the following cases are possible:

≲ Q3 few operations are associated with f ’s profile for i = 2
Q2 {

≳ Q3 otherwise

Considering Ri, it is obvious that R1 is smallest. For the other two association models, the

following two cases are possible:

≲ R3 if (very) few operations are associated with F
R2 {

≳ R3 otherwise

For example, R2 ≲ R3 occurs when all f ∈ F have the same profile. For Si, we observe that
S1 is smallest, while S2 also scales with the number of operations related to the given

profile and S3 scales with the number of attributes in all operations, which is
considerably larger.

Overall, this shows that record typing is the best approach in terms of efficiency. Profile

typing and attribute typing are less efficient in terms of measures Qi and Ri. However, the

measure S3 reveals the high costs of attribute typing in comparison to the other models,
because one has to iterate over all attributes of all operations in the FDO ecosystem to

find all operations associated to one FDO.

• Flexibility: Assuming that the number of FDOs associated to the new operation is much

larger than the number of profiles (for i = 2) associated to this operation, it trivially follows
that T1 ≳ T2 > T3 = 0. For Ui, obviously U1 > U2 = U3 = 0. Hence, in terms of required

updates, attribute typing is most efficient, followed by profile typing. In comparison,
record typing is relatively inefficient.

Finally, we will comment on qualitative aspects, that is, granularity and client knowledge, as
well as versatility.

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

16 • Granularity and client knowledge: For record typing, each FDO can be associated with

any operation as desired by the client. This is the most granular approach, as any

combination of FDOs and operations is possible. However, for each newly defined FDO, the

client who has introduced the FDO information record has to think of which operations to

include into the information record. This requires both domain knowledge regarding the

content information in the FDO, and knowledge about the association mechanism. The

price for higher granularity is therefore that for each new FDO a careful individual
inspection might be required to make an informed decision on operation association.

Attribute typing has a slightly smaller granularity as not every FDO can be seamlessly

associated to any operation. In turn, the association mechanism works out automatically,
which means that clients just need to include all information they have available into the

information record, without deciding for specific operations or attributes. However, in case

a client has a specific operation in mind that was not automatically associated to the FDO

but which one wants to be associated, one still needs to figure out which additional
attributes to include into the FDO information record.

Profile typing is the least granular approach. As each operation is associated to a whole

class of FDOs, there is a need for many different profiles to be made available to the client
to reach a granularity that is comparable with the other models. The advantage of profile

typing is that the client just has to make an informed choice as to which profile to use,
and then will be instructed which attributes are required in the information record due to

the profile definition. Hence, one does not have to think at all about associating their FDO

to any operations.

• Versatility: In contrast to its high granularity, the overall versatility of record typing is
considered to be the lowest, as each FDO-operation association must be explicitly

declared to increase the possible processing options for an FDO.

Profile typing has much greater versatility compared to record typing because a

profile is typically reused several times to create a set of FDOs, and all of these FDOs
automatically have the possible processing options defined by the operations associated

with that profile.

Compared to attribute typing, the versatility of profile typing is potentially lower because

attribute definitions that constitute an association condition are typically reused across
profiles and may occur in multiple target FDOs. These FDOs then automatically have the

possible processing options defined by these operations. In this way, an operation can still
be associated with any FDO whose profile contains the required set of attributes, and the

association is not missed simply because the association between the operation and the

profile was not explicitly made. In addition, an operation associated via profile typing may

assume the presence of specific, not necessarily mandatory, attribute definitions in the

profile. This could result in incompatibilities when executing the operation in case these

attribute definitions were not instantiated for a particular FDO. With attribute typing, this
cannot happen since the instantiation of all required attribute definitions is assured as
part of the association process.

Table 1 Overview of measures
between Record, Profile, and
Attribute Typing approaches
and corresponding metrics.

MEASURES RECORD
TYPING (i=1)

PROFILE
TYPING (i=2)

ATTRIBUTE
TYPING (i=3)

METRIC OVERVIEW

Simplicity high moderate low-moderate C1 < C2, C1 ≤ C3 and, in
general, C2 ≠ C3, A2 ≤ A1 in
most cases, A3 ≤ A2 for few
attributes

Efficiency high moderate low Q1 < Q2 and Q2 ≲ Q3 for few
operations in f ’s profile or
Q2 ≳ Q3; R1 < R2 and
R2 ≲ R3 for few operations
being associated with FDOs or
R2 ≳ R3; S1 < S2 < S3

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

Flexibility low moderate high T1 ≳ T2 > T3, U1 > U2 = U3

Versatility low moderate moderate–high None

Granularity and
Required Client
Knowledge

high low low–moderate None

17 Blumenröhr et al. 4.4 INTEROPERABILITY OF ASSOCIATION MODELS

In contrast to the other quality indicators, we do not define specific metrics to quantify

different levels of interoperability, which is out of scope for this work. Instead, we describe

the implications for interoperability of FDOs and their operations by the compatibility of the

introduced association models.

Interoperability of FDO operations refers to the ability to perform consistent, standardized

operations on FDOs across different systems and platforms, ensuring that actions such as
accessing, processing, or transforming the objects can be executed reliably and requested

uniformly by a client, regardless of the environment. From our point of view, different association

models should therefore be consistent and compatible with respect to a standardized FDO type

system that utilizes one or more typing mechanisms.

This ensures that when an FDO is accessed or manipulated across different platforms, its
type definitions and associated operations are consistently interpreted and executed. The type

system provides a common language for using the standardized structure of FDOs based on

one or more typing mechanisms, enabling seamless interaction between systems. Regardless of
which typing mechanisms are implemented within a service, it is critical that all clients accessing

an FDO obtain the same set of associated operations independent from the underlying model.

Profiles are essential for this as they provide a minimal, standardized metadata structure for
all FDOs. Because all association models for FDO Operations are expected to work with either
a profile, profile attributes (also operations that are specified in the record), or a combination

of both, they maintain a basic level of compatibility. Different association models using either
record, profile or attribute typing can therefore be applied to the same FDO since the type

system serves as a common language that allows different models to ‘understand’ which

operations are valid. This also means that regardless of whether a simple or complex association

model is used, the kernel metadata ensures that at least a core set of operations can be

applied universally.

4.5 IMPLEMENTATION CONSIDERATIONS

Based on the results of our comparative evaluation and considering the approach of modeling

the different association models using directed graphs, we conclude that implementations
such as described in section 3.2.1–3.2.3 would highly profit from storing the interconnected

components and the rules of each association model in proper graph data structures. This
way, the assessment of the information about associations as described by the metrics is done

once at ingestion time and stored as vertices and nodes according to the model, yielding the

structure as illustrated in Figure 6. The repetitive procedures described by the quality indicators
and quantified by their metrics are then facilitated. For example, assessment about which

operations are associated with a given FDO and vice versa can be performed with simple graph

queries. More complex procedures, such as is the case for attribute typing (cf. S3), could be also

compensated this way by caching and integrating rules for inferring information. This could

take place on the level of the object entities, as well as on the level of the services which store

additional information about some components, for example the profiles.

5 CONCLUSIONS

In this paper, we defined and assessed multiple modeling approaches for associating FAIR

Digital Objects with their operations through different typing mechanisms based on three

example implementations. Our analysis underlines that each model—record typing, profile

typing, and attribute typing—has distinct advantages and trade-offs for FDO ecosystems
concerning simplicity, efficiency, flexibility, versatility, and granularity in conjunction with

required client knowledge. While record typing offers simplicity and a high granularity, profile

typing and attribute typing provide enhanced flexibility, versatility and few required client
knowledge. Our findings also indicate that these association models are so far compatible

with each other that a particular FDO entity could incorporate all approaches at the same

time. This is also relevant with respect to interoperability between different FDO ecosystems.
Ultimately, adopting an association model will depend on the specific requirements of the

data environment, including client expectations and computational constraints. Future work

Data Science Journal
DOI: 10.5334/dsj-2025-
022

18 will need to consider how to manage FDO ecosystems at scale and which technologies are

most suitable for implementing different models, ensuring a robust foundation for machine-
actionable data infrastructures.

ACKNOWLEDGEMENTS

The authors thank the FDO Forum group participants who contributed valuable insights through

discussions and remarks during this work. Special thanks go to Larry Lannom from the

Corporation for National Research Initiatives (CNRI) and Yudong Zhang from GESIS–Leibniz-
Institut für Sozialwissenschaften.

FUNDING INFORMATION

This work is funded by the Helmholtz Metadata Collaboration Platform (HMC), NFDI4ING (DFG –

project number 442146713), and is supported by the research program ‘Engineering Digital
Futures’ of the Helmholtz Association of German Research Centers. Funded by the European

Union. This work has received funding from the European High Performance Computing Joint
Undertaking (JU) under grant agreement No 101093054.

AUTHOR CONTRIBUTIONS

Supervision: Nicolas Blumenröhr; Conceptualization: Nicolas Blumenröhr, Jana Böhm, Marco

Kulüke, Christophe Blanchi, Peter Wittenburg, Ulrich Schwardmann, Sven Bingert; Methodology

and Evaluation: Nicolas Blumenröhr, Jana Böhm, Philipp Ost; Revision of State-of-the-Art
analysis and background: Nicolas Blumenröhr, Jana Böhm, Philipp Ost, Peter Wittenburg, Ulrich

Schwardmann, Sven Bingert, Christophe Blanchi.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Nicolas Blumenröhr orcid.org/0009-0007-0235-4995
Karlsruhe Institute of Technology, Scientific Computing Center, Germany

Jana Böhm orcid.org/0009-0004-9802-113X
GWDG, Germany

Philipp Ost orcid.org/0000-0002-7198-0566
Karlsruhe Institute of Technology, Scientific Computing Center, Germany

Marco Kulüke orcid.org/0000-0003-0611-2567
German Climate Computing Center, Germany

Peter Wittenburg orcid.org/0000-0003-3538-0106
Max Planck Institute for Psycholinguistics, Netherlands

Christophe Blanchi orcid.org/0000-0003-2277-5176
DONA Foundation, Switzerland

Sven Bingert orcid.org/0000-0001-9547-1582
GWDG, Germany

Ulrich Schwardmann orcid.org/0000-0001-6337-8674
GWDG, Germany

REFERENCES

Anders, I. et al. (2023a) FAIR Digital Object Technical Overview. Available at: https://doi.org/10.5281/
zenodo.7824714 (Accessed: 02/19/2025).

Anders, I. et al. (2023b) FDO Forum FDO Requirement Specifications. Available at: https://doi.org/10.5281/
zenodo.7782262 (Accessed: 02/19/2025).

Blanchi, C., Gebre, B. and Wittenburg, P. (2022) ‘Canonical Workflow for Machine Learning Tasks’, Data

Intelligence, 4(2), pp. 173–185. Available at: https://doi.org/10.1162/dint_a_00124

Blumenröhr, N. (2025) kit-data-manager/DOIP-Client-and-TPM-Adapter- Service-for-FDOs: V 1.0.0.
Available at: https://doi.org/10.5281/zenodo.14886300 (Accessed: 02/18/2025).

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

https://orcid.org/0009-0007-0235-4995
https://orcid.org/0009-0007-0235-4995
https://orcid.org/0009-0004-9802-113X
https://orcid.org/0009-0004-9802-113X
https://orcid.org/0000-0002-7198-0566
https://orcid.org/0000-0002-7198-0566
https://orcid.org/0000-0003-0611-2567
https://orcid.org/0000-0003-0611-2567
https://orcid.org/0000-0003-3538-0106
https://orcid.org/0000-0003-3538-0106
https://orcid.org/0000-0003-2277-5176
https://orcid.org/0000-0003-2277-5176
https://orcid.org/0000-0001-9547-1582
https://orcid.org/0000-0001-9547-1582
https://orcid.org/0000-0001-6337-8674
https://orcid.org/0000-0001-6337-8674
https://doi.org/10.5281/zenodo.7824714
https://doi.org/10.5281/zenodo.7824714
https://doi.org/10.5281/zenodo.7782262
https://doi.org/10.5281/zenodo.7782262
https://doi.org/10.1162/dint_a_00124
https://doi.org/10.5281/zenodo.14886300

19 Blumenröhr, N. and Aversa, R. (2023) ‘From implementation to application: FAIR digital objects for training

data composition’, Research Ideas and Outcomes, 9, e108706. Available at: https://doi.org/10.3897/
rio.9.e108706

Blumenröhr, N. et al. (2025) “FAIR Digital Objects for the Realization of Globally Aligned Data Spaces”. IEEE

International Conference on Big Data (BigData). Washington, DC, USA, 14–18 December 2024. IEEE

Xplore, pp. 374–383. Available at: https://doi.org/10.1109/BigData62323.2024.10825796

Chen, P.P.-S. (1976) ‘The entity-relationship model—toward a unified view of data’, ACM Trans. Database

Syst., 1(1), pp. 9–36. Available at: https://doi.org/10.1145/320434.320440

Curry, E., Scerri, S. and Tuikka, T. (2022) ‘Data Spaces: Design, Deployment, and Future Directions’, in

E. Curry, S. Scerri, and T. Tuikka (eds.) Data Spaces: Design, Deployment and Future Directions. Cham:
Springer International Publishing, pp. 1–17. Available at: https://doi.org/10.1007/978-3-030-98636-0

DONA Foundation (2018) Digital Object Interface Protocol Specification. Available at:
https://www.dona.net/sites/default/files/2018-11/DOIPv2Spec_1.pdf (Accessed: 07/28/2021).

European Commission et al. (2021) EOSC interoperability framework: report from the EOSC Executive Board

Working Groups FAIR and Architecture. LU: Publications Office of the European Union. Available at:
https://doi.org/10.2777/620649

fairdo (2025) Available at https://gitlab.com/fairdo (Accessed: 02/19/2025).
Islam, S. (2023) ‘FAIR digital objects, persistent identifiers and machine actionability’, FAIR Connect, 1(1),

pp. 29–34. Available at: https://doi.org/10.3233/FC-230001

Islam, S. et al. (2023) ‘Assessing the FAIR Digital Object Framework for Global Biodiversity Research’, Rio, 9.
Available at: https://doi.org/10.3897/rio.9.e108808

Jeffery, K. et al. (2021) ‘Not Ready for Convergence in Data Infrastructures’, Data Intelligence, 3(1),
pp. 116–135. Available at: https://doi.org/10.1162/dint_a_00084

Kahn, R. and Wilensky, R. (2006) ‘A framework for distributed digital object services’, International Journal
on Digital Libraries, 6(2), pp. 115–123. Available at: https://doi.org/10.1007/s00799-005-0128-x

Kulüke, M. (2025) Marco-DKRZ/example-record-typing: auto. Available at: https://doi.org/10.5281/zenodo.
14860533 (Accessed: 02/18/2025).

Lannom, L., Koureas, D. and Hardisty, A.R. (2020) ‘FAIR Data and Services in Biodiversity Science and

Geoscience’, Data Intelligence, 2(1–2), pp. 122–130. Available at: https://doi.org/10.1162/
dint_a_00034

Lannom, L. et al. (2022) FDO Forum FDO Configuration Types. Available at: https://doi.org/10.5281/zenodo.
7825703 (Accessed: 12/13/2024).

Madavarapu, J.B. et al. (2024) ‘AI-Powered Solutions Advancing UN Sustainable Development Goals: A

Case Study in Tackling Humanity’s Challenges’, in W. Leal Filho et al. (eds.) Digital Technologies to

Implement the UN Sustainable Development Goals. Cham: Springer Nature Switzerland, pp. 47–67.
Available at: https://doi.org/10.1007/978-3-031-68427-2_3

Moody, D.L. (1998) ‘Metrics for Evaluating the Quality of Entity Relationship Models’. en, Conceptual
Modeling – ER ’98, Singapore, 16–19 November, 1998. Berlin, Heidelberg: Springer, pp. 211–225.
Available at: https://doi.org/10.1007/978-3-540-49524-6_18

Pierce, B.C. (2002) Types and Programming Languages. 1st ed. Cambridge, Massachusetts: MIT Press.
Schultes, E. and Wittenburg, P. (2019) ‘FAIR Principles and Digital Objects: Accelerating Convergence on a

Data Infrastructure’, in A. Pozanenko (ed.) Data Analytics and Management in Data Intensive Domains.
Moscow: Springer Cham, pp. 3–16. Available at: https://doi.org/10.1007/978-3-030-23584-0_1

Schwardmann, U. (2017) ‘Automated schema extraction for PID information types’, Proc. IEEE

International Conference on Big Data (Big Data). Washongton D.C., USA, 5–8 December 2016: IEEE

Xplore, pp. 3036–3044. Available at: https://doi.org/10.1109/BigData.2016.7840957

Smedt, K., Koureas, D. and Wittenburg, P. (2020) ‘FAIR Digital Objects for Science: From Data Pieces to

Actionable Knowledge Units’, Publications, 8, 21. Available at: https://doi.org/10.3390/
publications8020021

Soiland-Reyes, S., Goble, C. and Groth, P. (2024) ‘Evaluating FAIR Digital Object and Linked Data as
distributed object systems’, PeerJ Computer Science, 10, e1781. Available at: https://doi.org/10.7717/
peerj-cs.1781

Weigel, T. et al. (2019) RDA Recommendation on PID Kernel Information. Available at: https://doi.org/10.
15497/rda00031

Wilkinson, M.D. et al. (2016) ‘The FAIR Guiding Principles for scientific data management and stewardship’,
Scientific Data, 3(1), 160018. Available at: https://doi.org/10.1038/sdata.2016.18

Wittenburg, P. and Strawn, G. (2018) Common Patterns in Revolutionary Infrastructures and Data.
Available at: https://doi.org/10.23728/b2share.4e8ac36c0dd343da81fd9e83e72805a0

Blumenröhr et al.
Data Science Journal
DOI: 10.5334/dsj-2025-
022

TO CITE THIS ARTICLE:
Blumenröhr, N., Böhm, J., Ost,
P., Kulüke, M., Wittenburg, P.,
Blanchi, C., Bingert, S. and
Schwardmann, U. (2025)
A Comparative Analysis of
Modeling Approaches for the
Association of FAIR Digital
Objects Operations. Data
Science Journal 24: 22,
pp. 1–19. DOI: https://doi.org/
10.5334/dsj-2025-022

Submitted: 24 February 2025
Accepted: 06 August 2025
Published: 29 August 2025

COPYRIGHT:
© 2025 The Author(s). This
is an open-access article
distributed under the terms
of the Creative Commons
Attribution 4.0 International
License (CC-BY 4.0), which
permits unrestricted use,
distribution, and reproduction
in any medium, provided the
original author and source
are credited. See http://
creativecommons.org/
licenses/by/4.0/.

Data Science Journal is a peer-
reviewed open access journal
published by Ubiquity Press.

https://doi.org/10.5334/dsj-2025-022
https://doi.org/10.5334/dsj-2025-022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3897/rio.9.e108706
https://doi.org/10.3897/rio.9.e108706
https://doi.org/10.1109/BigData62323.2024.10825796
https://doi.org/10.1145/320434.320440
https://doi.org/10.1007/978-3-030-98636-0
https://www.dona.net/sites/default/files/2018-11/DOIPv2Spec_1.pdf
https://doi.org/10.2777/620649
https://gitlab.com/fairdo
https://doi.org/10.3233/FC-230001
https://doi.org/10.3897/rio.9.e108808
https://doi.org/10.1162/dint_a_00084
https://doi.org/10.1007/s00799-005-0128-x
https://doi.org/10.5281/zenodo.14860533
https://doi.org/10.5281/zenodo.14860533
https://doi.org/10.1162/dint_a_00034
https://doi.org/10.1162/dint_a_00034
https://doi.org/10.5281/zenodo.7825703
https://doi.org/10.5281/zenodo.7825703
https://doi.org/10.1007/978-3-031-68427-2_3
https://doi.org/10.1007/978-3-540-49524-6_18
https://doi.org/10.1007/978-3-030-23584-0_1
https://doi.org/10.1109/BigData.2016.7840957
https://doi.org/10.3390/publications8020021
https://doi.org/10.3390/publications8020021
https://doi.org/10.7717/peerj-cs.1781
https://doi.org/10.7717/peerj-cs.1781
https://doi.org/10.15497/rda00031
https://doi.org/10.15497/rda00031
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.23728/b2share.4e8ac36c0dd343da81fd9e83e72805a0

	 Abstract
	1 Introduction
	2 Background
	2.1 Foundations of FDOs and the Core Model
	2.2 Problem Description

	3 Models for Associating FDOs to their Operations
	3.1 Typing Mechanisms
	3.1.1 Record Typing
	3.1.2 Profile Typing
	3.1.3 Attribute Typing

	3.2 Implementation Examples
	3.2.1 Record Typing in Interactive Computing Environments
	3.2.2 Profile Typing with Multiple Registries
	3.2.3 Attribute Typing with Operation FDOs

	4 Model Evaluation and Discussion
	4.1 Modeling the Association Mechanisms as Graphs
	4.2 Evaluation of Quality Indicators and Metrics
	Quantitative Quality Indicators
	Qualitative Aspects

	4.3 Comparison of Measures
	4.4 Interoperability of Association Models
	4.5 Implementation Considerations

	5 Conclusions
	Acknowledgements
	Funding Information
	Author Contributions
	Competing Interests
	Author Affiliations
	References

