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ABSTRACT
Data plays a fundamental role in advancing knowledge and driving research 
across all fields. Despite the abundance of data, several challenges still need to be 
addressed. These challenges include limited accessibility, heterogeneous data, lack of 
interconnections between associated topics, difficulty retrieving required information, 
semantic mismatches, and several other challenges. Ontologies provide a structured 
method to address these challenges effectively. 

This study addresses two central aspects of ontology research. First, it details 
the multidisciplinary ontology development process, highlighting the challenges, 
mitigation strategies, and impacts on domain data management. It then offers 
guidelines for beginners and individuals with a background in data management on 
effective engagement in ontology creation. 

Second, it introduces the Ontology for Multiscale Simulation methods (Onto-MS), 
constructed by following the guidelines from the first part. The ontology, developed in 
Web Ontology Language (OWL) using Protégé, integrates with other ontologies, such 
as the Elementary Multiperspective Material Ontology (EMMO), aligning this research 
with the Linked Data concept. A custom Python script was used to incorporate the 
ontology into an Electronic Laboratory Notebook (ELN), enabling the automatic 
creation of knowledge graphs and systematic data organization conforming to the 
ontology.

This research successfully answers the fundamental questions in interdisciplinary 
or domain-level ontology development. Onto-MS provides a robust framework for 
organizing and linking data in multiscale simulations within computational materials 
science. Furthermore, ontology incorporation into an ELN simplifies its integration into 
data management practices. While ontology development is ongoing, the current 
version is functional and continuously refined with new insights and feedback.
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1. INTRODUCTION
The integration of computing and information principles across disciplines is gaining momentum 
and broader adoption. As a result, it has given rise to various interdisciplinary fields, such as 
materials and biomedical informatics. This approach substantially complements traditional 
research and supports the growing demands of scientific advancement.

Material informatics, for example, applies information science principles to improve the 
understanding of material data, long-term storage, and retrieval, ultimately accelerating data-
driven discoveries in materials science.

A critical strategy for organizing scientific information in computational environments is 
the use of ontology, which formally describes a system through distinct concepts and their 
interrelationships (Ghedini et al., 2020). A domain ontology, however, formalizes concepts and 
relationships relevant to a particular community or an area of knowledge (ISO/IEC 21838-
1, 2021). Concepts in ontology are simplified and abstract representations of phenomena, 
entities, or ideas. They are formally defined and serve as the building blocks of an ontology.

The aim of the ontology construction is to foster a shared understanding, enable the reuse of 
domain data, facilitate interoperability among information systems, and standardize knowledge 
representation (Pinto and Martins, 2004; Noy and McGuinness, 2001). However, constructing 
domain or interdisciplinary ontologies, such as those for simulation methods in materials 
science, presents several challenges. The variety of terminology across disciplines complicates 
the development of a shared vocabulary containing clear and consistent definitions. These 
ontologies must accurately represent and logically interconnect concepts from different 
scientific areas. Simulations in material science span multiple length scales, making it difficult 
to integrate them within a unified framework. Moreover, developers often struggle to capture 
domain-specific requirements, leading to overly complex or too abstract designs, ultimately 
making them unattractive and less reusable.

Since their introduction, ontologies have been explored for potential benefits across various 
fields of study. The necessity for ontology building, along with strategies and methodologies, has 
been extensively discussed in the literature (Pinto and Martins 2004; Noy and McGuinness 2001; 
Jones et al., 1998; Arp et al., 2015). As a result, numerous ontologies have been developed; for 
instance, more than 40 ontologies have been reported within the domain of material science 
alone (De Baas et al., 2023). While these studies mainly focus on describing concepts and 
relationships, they lack details of the challenges associated with building a domain ontology. 
These research works typically present a finalized ontology and recommend its integration into 
research. However, the answer to effectively exploiting or integrating ontologies into existing 
research is missing.

Additionally, ontologies have been employed in modeling and simulation contexts (Lacy and 
Gerber, 2004; Benjamin et al., 2006; Rubin et al., 2006; Turnitsa et al., 2010; Silver et al., 2011), 
often supported by semantic query languages (Grolinger et al., 2012) like SPARQL Protocol 
and RDF Query Language (SPARQL) (Prud’hommeaux and Seaborne, 2008) and Semantic Web 
Rule Language (SQWRL) (O’Connor and Das, 2009). Although these works provide detailed 
descriptions of the resultant ontologies, they fall short in terms of their implementation, efficient 
usage, and creation process. However, such efforts led to initiatives like MODA (CEN Workshop, 
2018) (materials modeling data), a standard for describing simulation-related information, 
and its ontological transformation, Ontology for Simulation, Modelling, and Optimization 
(OSMO) (Horsch et al., 2021). However, OSMO lacks adequate connections to other ontologies, 
shows limited ontological clarity in class hierarchies, and presents challenges in constructing 
knowledge graphs.

Recent efforts like Physics-based Simulation Ontology (PSO) (Cheong and Butscher, 2019) 
and ontology-based simulation (Ontology-Sim) (May et al., 2022) attempt to address these 
limitations, but significant gaps remain in practical usability, multiscale representation, and 
integration strategies.

Thus, there is a clear need for an interdisciplinary ontology that supports multiscale capabilities 
in materials science simulation, overcomes challenges in its construction, offers user-friendly 
interaction, and complies with linked data and accepted ontology standards.
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This research addresses these knowledge gaps by exploring the development and utilization of 
domain ontologies and answers the following key research questions in the first part.

1.	 What are the primary challenges in multidisciplinary ontology development, and what 
strategies are employed to overcome them?

2.	 How can individuals effectively contribute to ontology development and research data 
management?

3.	 How do ontological practices influence and enhance data management and utilization 
within the domain?

The second part of the study presents Onto-MS, the developed ontology, constructed based 
on the directions provided in the first part. Onto-MS concepts are defined with agreed-upon 
definitions and preferred labels. The concept hierarchy is structured through “is-a” or “kind-of” 
logic for reasoning. The ontology incorporates linked data principles and reuses established 
ontology elements by strictly adhering to ontological guidelines from the literature. The 
ontology is centered around three fundamental concepts in simulation and accommodates 
modeling across different scales (electronic, atomic, nano, micro, and macro).

Furthermore, this study explores the transformation of the Onto-MS into the Karlsruhe Data 
Infrastructure for Materials Science (Kadi4Mat) (Brandt et al., 2021), an ELN and repository, to 
enhance accessibility and usability. Practical insights are provided to create knowledge graphs 
based on Onto-MS and organize data related to their simulation use cases.

Onto-MS improves upon existing ontologies by effectively addressing core challenges such 
as domain ontology building, semantic interoperability, logical structuring, and practical 
reusability. Through its integration into an ELN environment, it supports streamlined, intuitive 
use of ontology concepts in multiscale simulations, making semantic technologies more 
accessible to researchers in materials science. Thus, it provides a more holistic and usable 
framework to document simulations. 

The remainder of this paper is structured as follows: Section 2 reviews the relevant literature; 
Section 3 outlines the ontology development challenges, mitigation strategies adopted in Onto-
MS, and impacts on data management; Section 4 presents guidelines on performing ontological 
research data management; Section 5 presents Onto-MS methodology and its integration into 
Kadi4Mat; Section 6 presents and discusses the results, focusing on the finalized ontology and 
its multiscale capabilities; and Section 7 concludes with key findings and future directions.

2. LITERATURE REVIEW
Ontologies emerged in computer science in the 1990s (Gruber, 1995). Over the years, there have 
been numerous attempts to apply ontologies to fields beyond computer science. The usage of 
ontologies became prevalent and famous in some fields, i.e., bioinformatics, due to the early 
development of some comprehensive ontologies (e.g., Gene Ontology) (Ashburner et al., 2000). 
However, the modeling and simulation (M&S) community has not widely adopted ontology 
practices and procedures. Researchers in M&S have undertaken the following efforts to explore 
the ontology potential. These selected efforts can broadly be divided into two categories.

The first aspect concerns ontology development, different approaches, and their importance 
in managing scientific data. 

Foundational concepts related to the motivations, methodologies, and challenges of ontology 
development have been discussed by several authors (Pinto and Martins, 2004; Noy and 
McGuinness, 2001). In this research, their insights, particularly regarding best practices, guided 
the methods in section 4.2 and helped avoid common mistakes during ontology development. 
Similarly, Arp et al. (2015) explained best practices in ontology development and presented 
the Basic Formal Ontology (BFO) with its implications, further supporting the methodological 
perspective of this study.

Additionally, Jones et al. (1998) reviewed various ontology-building methodologies, providing 
a comparative discussion and outlining five key issues that were addressed in this research by 
ensuring reuse potential, selecting an appropriate development model, aligning informal and 
formal descriptions, and providing clear guidelines for extending ontologies.
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Subsequently, Fathalla et al. (2018) introduced the SemSur ontology to enhance the 
communication of research publications. It shifts from traditional text-based formats to 
a transparent and comparable structure that uses a unified knowledge base to capture 
information from survey and review articles. Following this, Matentzoglu et al. (2018) provided 
community-reviewed Minimum Information for Reporting an Ontology (MIRO) guidelines for 
documenting ontologies. Those guidelines aim to improve ontology documentation quality, 
consistency, and completeness. MIRO has been taken into consideration during ontology 
documentation.

In the materials science domain, Himanen et al. (2019) discussed the main challenges related 
to irrelevance, incompleteness, and non-standardization, presenting ontologies as a remedy 
that parallels the objectives of the developed ontology (Onto-MS) in addressing similar issues.

Most recently, Bayerlein et al. (2024) demonstrated how the Platform Material Digital Core 
Ontology (PMDco) bridges semantic gaps across various domains. This is a strategy that aligns 
with this research effort to ensure interoperability between domain-specific knowledge.

The second aspect focuses on the use of ontologies in modeling and simulation.

Early efforts in this field began when Lacy and Gerber (2004) demonstrated the crucial role of 
the Web Ontology Language (OWL) in representing information on the Semantic Web for the 
simulation and modeling domain. Their arguments underlie the choice of OWL as the preferred 
ontology language in this study.

Similarly, Benjamin et al. (2006) emphasized the value of ontologies in facilitating simulation 
modeling, while Rubin et al. (2006) described an ontology-based framework for representing 
physiological dynamic simulations of circulation. Their framework effectively reduced the 
complexity of the process description and assisted in a more straightforward visualization of 
the complex models.

Turnitsa et al. (2010) discussed how ontology development in modeling and simulation differs 
from other disciplines, often being driven by research questions defined by the modeler.

More recently, Cheong and Butscher (2019) introduced the Physics-based Simulation Ontology 
(PSO), composed of PSO-Physics for physical phenomena and PSO-Sim for simulation solvers. 
However, these studies primarily focused on solvers and physical equations, leaving other 
essential aspects of simulation ontology unexplored, a gap this research intends to fill.

3. INTEGRATING MULTIDISCIPLINARY EXPERTISE IN ONTOLOGY 
DEVELOPMENT: CHALLENGES, MITIGATION STRATEGIES AND 
IMPACTS
Domain-specific research projects frequently involve collaboration across disciplines. Therefore, 
ontology development for a domain should incorporate the input and perspectives of all the 
contributors involved. Although the interdisciplinary approach offers numerous benefits, it also 
introduces several challenges. 

Below are some of the challenges of an interdisciplinary approach, the mitigation strategies 
employed in Onto-MS, and their impacts on data.

The insights and strategies presented in this section have been derived from ontology-related 
initiatives in several large collaborative projects, including the Post Lithium Storage Cluster of 
Excellence (POLIS) (‘POLiS - Cluster of Excellence,’ 2019), the Multiscale Materials, Process and 
Device Modeling and Design Platform (MUSICODE) (Konchakova et al., 2022), and the National 
Research Data Infrastructure for Engineering Sciences (NFDI4Ing) (Schmitt et al., 2020).

In this study, the terms ‘domain ontology’, ‘domain-level ontology’, and ‘multidisciplinary 
ontology’ refer to the same concept.

3.1. CHALLENGES

Inconsistent terminology: It is observed that researchers from differing disciplines often use 
different terms to describe the same concept, which results in semantic heterogeneity and 
misunderstandings.
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For instance, the terms ‘solid electrolyte interphase’ (SEI), ‘passivation layer’, ‘interface layer’, 
and ‘surface film’ are used interchangeably to describe the same phenomenon in different 
research scenarios.

In contrast, a term can have multiple interpretations depending on the discipline. A cell is the 
fundamental unit of life in biology. However, in chemistry, it refers to an electrochemical device 
used to generate electrical energy.

Communication challenges: When building domain ontologies, researchers from various 
disciplines contribute their specialized knowledge, which can reveal significant knowledge 
gaps. These gaps often result in communication challenges, as participants may not clearly 
understand each other’s research perspectives.

The evaluation of the impact of SEI on battery performance across disciplines is an excellent 
example of this challenge. A material scientist focuses on the chemical properties and 
formation mechanisms of SEI. In contrast, a data scientist assesses performance based on 
data analysis, statistical methods, and machine learning, often without understanding the 
underlying electrochemical processes.

Difference in motivation: As mentioned above, researchers from various fields contribute to 
domain-level ontology building. However, they may not share equal motivation for engaging 
in research data management (RDM) activities. Such activities are often seen as an additional 
burden rather than a vital part of the research. This disparity can delay progress and cause 
under-participation in ontology development.

Depth and breadth of the ontology: The breadth of the ontology is the extent to which it 
covers the domain, while depth pertains to the level of detailed knowledge it includes (Yao 
et al., 2011). Maintaining a balance between the two is essential: a highly detailed ontology 
may become overly complex and narrowly focused, whereas one emphasizing broad coverage 
might lack specificity and fail to engage the target audience.

Interdisciplinary expertise: Until this point, it has been established that domain ontology 
building is an interdisciplinary effort. Thus, it requires a project leader who can understand 
the data from different fields and effectively communicate across disciplines. However, finding 
such an expert is often challenging.

Resource constraint and available expertise: Ontology development involving domain 
experts demands significant time, effort, and resources to achieve project goals. Coordinating 
interdisciplinary teams and managing project logistics can be resource-intensive, especially for 
large-scale projects.

3.2. MITIGATION OF CHALLENGES IN ONTO-MS

Below are mitigation strategies adopted during the development of Onto-MS to address the 
challenges. These are presented in the same order as the challenges above and are addressed 
individually. 

•	 Shared conceptualization is central to ontology development. In Onto-MS, extensive 
efforts were dedicated to achieving consensus on concept definitions, possible 
interconnections, and alignment with established vocabularies. These efforts included 
monthly ontology workshops with researchers engaged in simulation activities 
at different length scales. As a result, a standardized glossary was developed for 
foundational concepts like Task, Model, Algorithm, and others. This glossary was initially 
maintained in a shared document, which was subsequently merged with ontology 
documentation and published on GitHub.

•	 To overcome the communication challenges, regular workshops and open discussion 
sessions were organized. These sessions, led by an ontologist, brought together research 
data managers and simulation experts from diverse backgrounds, such as materials 
science, electrochemistry, physics, and mechanical engineering. The structured 
discussions helped clarify domain-specific viewpoints, resolve misunderstandings, and 
bridge knowledge gaps. 

•	 Outreach programs, such as introductory ontology sessions, were offered at the 
beginning of the project to educate researchers about the long-term benefits of 
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ontologies. Subsequent webinars demonstrated how domain-specific ontology 
approaches can support tasks like model validation and data integration across scales. A 
strong emphasis was placed on treating research data management as an integral part 
of the research rather than extra work.

•	 User-friendly tools such as the Kadi ecosystem (Brandt et al., 2021), detailed guidelines 
(as provided in Section 5), and automated workflows were introduced to integrate 
data management into daily research routines. The core Onto-MS structure has 
been incorporated into Kadi4Mat (as specified in Section 6.3) to ensure project-wide 
consistency and reusability. All project members are currently adopting the ontology 
structure within Kadi4Mat to describe their specific use cases.

•	 The breadth of the ontology was defined to cover essential concepts for multiscale 
simulation based on the set requirements (see Section 6.1 for detailed requirements). The 
perspective of participating simulation users was carefully considered when specifying 
the depth of the ontology, which ensured the inclusion of all necessary concepts to 
describe a simulation process from start to end. This balance reduces complexity and 
increases ontology acceptance.

•	 Onto-MS was developed iteratively, where core concepts are initially focused on, and 
then the ontology is gradually expanded. Domain experts and end users were engaged 
in a continuous feedback loop through structured review sessions to refine depth and 
coverage.

•	 A multidisciplinary team comprising members with domain-specific knowledge and 
ontology development expertise was formed. The author coordinated these efforts, 
drawing on relevant experience in both ontology engineering and material science, 
thereby acting as an interdisciplinary expert (Keestra, 2017).

An interdisciplinary expert comprehends the intricacies of specialized fields and possesses 
skills across multiple disciplines, allowing them to approach problems and challenges 
comprehensively.

•	 The Onto-MS development was monitored through regular meetings, and no formal 
project management tools were employed. This approach proved sufficient for this work. 
However, for similar large-scale interdisciplinary projects, applying project management 
principles and best practices (Project Management Institute, 2021) is recommended to 
effectively plan, execute, monitor, and achieve all project goals.

3.3. ADVANTAGES OF INTERDISCIPLINARY ONTOLOGY APPROACH

While the general benefits of ontology development are discussed in the introduction and 
literature review, this section focuses on the domain-specific impacts of Onto-MS.

Eradication of Isolated Domain Concepts: Onto-MS eliminates isolated concepts by logically 
linking related entities in the multiscale simulation domain. This connectivity ensures 
meaningful clustering and supports improved reasoning across the domain.

Unified Understanding and Interoperability: The development of Onto-MS fosters shared 
conceptualization and standardized domain information. This shared understanding enhances 
semantic interoperability and bridges disciplinary gaps within the domain.

Knowledge Sharing and Collaboration: The development of Onto-MS has strengthened 
community ties and fostered a culture of collaborative research, which, in turn, promotes 
knowledge exchange, creates a coherent research environment, and creates opportunities for 
collaboration on other relevant research avenues.

Broader Impact: Collaboration across disciplines has expanded the potential impact and 
applications of Onto-MS beyond individual research fields. By spanning multiple disciplines, Onto-MS 
facilitates interdisciplinary research, cross-domain problem-solving, and efficient data exchange. 

4. CONNECTING RESEARCHERS WITH ONTOLOGY DEVELOPMENT 
The following steps help researchers with limited ontology or data management knowledge 
to bridge the gap between research and data management by using ontological methods. 



7Noman and Selzer  
Data Science Journal  
DOI: 10.5334/dsj-2025-028

By following these instructions, researchers can fulfill most ontology-building requirements 
without the need for direct support from an ontologist. Although these steps are sequential, 
they may also be iterative or concurrent based on the research context.

1.	 Experiment documentation: Carefully record all the relevant data about an experiment 
so that no critical details are overlooked.

2.	 Digital storage of data: Whenever data documentation is done physically, secure 
it digitally, preferably in an electronic notebook that allows easy access and retrieval for 
future analysis and reference.

3.	 Data classification: Data should be organized into meaningful categories to facilitate 
understanding and logical clustering. For example, temperature, pressure, and time can 
all be categorized as process parameters based on the specific process or use case. Data 
classification can co-occur during documentation in step 1.

4.	 Metadata documentation: Metadata provides indispensable information about data, 
enhancing the understanding and usability of a data resource. A metadata vocabulary, 
such as the Dublin Core Vocabulary (Dublin Core Metadata Initiative, 2019), can be 
incorporated to describe any resource type using its established metadata elements. 

•	 Defining terminology: Define the terms used to describe the recorded data to reduce 
ambiguity. This practice ensures that the data is understandable across researchers 
from multiple fields. 

5.	 Standard data format: Formulate a consistent (standardized) format for documenting 
information across similar experiments to maintain uniformity and comparability. A 
literature review and feedback from domain experts can help to choose an appropriate 
format. 

6.	 Data format refinement: The data recording format should be revised at regular intervals 
to incorporate user feedback and advancing research. 

7.	 Holistic approach: Consider the holistic impact of the research. Identify the connections 
between distinct related topics within the domain under consideration. Holistic thinking 
helps eliminate isolated pieces of information and facilitate linked data. 

These steps enhance data management and can be mapped to the first three layers of data 
evolution, or the Data Information Knowledge Wisdom Hierarchy (DIKW) (Frické, 2019), as 
shown in Figure 1 below.

The data layer (steps 1–3) is the foundational layer, consisting of raw, unstructured data that 
originates with documentation, storage, and basic classification. The information layer (steps 
4–6) is the layer where data is enriched with context, standard terminologies, and a consistent 
format to make it more meaningful. The knowledge layer (step 7 and beyond) is the layer where 
information transforms into valuable knowledge by using structured data, holistic thinking, and 
the linking of relevant datasets within a domain. This layer then supports decision-making and 
reasoning and represents the operational domain of the semantic web and ontologies.

Figure 1 represents the progressive transformation of data. It shows how data can evolve 
through structured steps to enable ontology-based intelligent systems.

Figure 1 The DIK hierarchy as 
it aligns with the ontological 
data management process. 
The color-coded stair-
step model maps data 
management actions (steps 
1–7) onto the levels of data 
and information, ultimately 
leading to the knowledge and 
ontologies.
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5. METHODOLOGY

5.1. ONTOLOGY DEVELOPMENT LIFECYCLE AND METHODOLOGY

In contrast to section 4, which introduced beginners to ontological data management, this 
section presents the actual development process of Onto-MS, which was developed through 
collaboration between an ontologist and domain experts to achieve the intended goal.

Ontology development is an iterative process that requires repeating specific steps to produce 
a robust version. These iterations ensure that the ontology is up-to-date and incorporates 
relevant knowledge.

Before going into detail about the ontology development process, it is important to emphasize 
that there is no single “correct” method to model a system; approaches vary according to the 
user needs and intended purpose. Nonetheless, this research predominantly drew inspiration 
from the methodologies outlined in two previously cited articles (Pinto and Martins, 2004) 
(Noy and McGuinness, 2001). Different modeling strategies, such as top-down and bottom-
up strategies, are reported in the literature (Martins, 2004). However, the following steps and 
procedures have proven beneficial and relevant in the development of Onto-MS.

Domain and scope: The domain addressed by Onto-MS is multiscale simulation methods in 
computational materials science. In terms of scope, the ontology will encompass terminology 
across various simulation scales (atomic, molecular, and macroscopic) and support use 
cases including model selection, interdisciplinary communication, and the integration and 
standardization of simulation data.

Modelling strategy: The choice of modelling strategy is often driven by the specific needs and 
intended applications of the ontology. Onto-MS was developed using a middle-out modeling 
approach, which is particularly appropriate for a domain with well-established foundational 
concepts and flexible, evolving boundaries. This approach focuses on identifying familiar domain-
relevant mid-level concepts that are neither overly abstract (as in upper-level ontologies) nor 
excessively specific (as in application ontologies). Concepts such as Task, Model Entity, and 
Solver were chosen because they are well understood and broadly applicable across users 
working on various simulation length scales and in different application areas. A key reason 
for choosing this strategy is the flexibility it provides. It enables the seamless upward mapping 
of concepts with established upper-level ontologies while accommodating the downward 
extension to incorporate more details such as types, parameters, and implementation-related 
details. Thus, it provides a stable and extensible core upon which an ontology can be expanded 
in both directions. 

Purpose and requirements of ontology: The need for the ontology, the knowledge gaps it 
aims to address, and the essential features it must incorporate should be clearly defined. The 
primary purpose of Onto-MS is to capture and standardize the core simulation data in multiscale 
materials simulations to improve interdisciplinary communication and data management 
practices. A key objective is to identify and establish semantic connections across various 
simulation length scales to enable users to understand when outputs from one scale can serve 
as inputs for another. Onto-MS is intended to support the creation of knowledge graphs in an 
ELN. Additionally, it must align with existing upper-level ontologies and concepts to ensure 
interoperability and semantic consistency. The ontology must be usable and extensible to 
include new knowledge and evolving requirements.

Requirements are based on the purpose and involve deciding on the Onto-MS’s features and 
the structure, such as:

•	 A shared vocabulary of formally defined and agreed-upon terms. 

•	 Connection between various simulation length scales with appropriate relationships to 
represent a comprehensive and coherent domain model. 

•	 Compatibility with ontology tools and standards, such as Protégé, and the use of OWL 
and SPARQL as the de facto ontology and query languages. 

•	 Reuse of semantically equivalent concepts from upper-level ontologies such as EMMO 
(Ghedini et al., 2020) and others. 
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•	 Clear, user-friendly explanation and detailed documentation accessible through an open 
platform (e.g., GitHub) to support version tracking and future updates.

Domain knowledge acquisition and analysis: Domain knowledge was gathered through a 
comprehensive literature review (see section 2) and by examining existing relevant ontologies. 
To support the analysis and selection of available knowledge, domain experts provided valuable 
input through discussions and feedback to the author. While ontologists may not be experts 
in a specific field, their foundational understanding facilitates effective communication with 
domain experts and the integration of relevant domain concepts.

Ontology design: Classes, hierarchies, and relations: Building on the relevant literature 
identified earlier, the next step involved specifying ontology classes, subclasses, hierarchy, and 
restrictions. Core entities were modeled as classes based on their functional roles in simulation 
workflows. The class hierarchy in Onto-MS reflects ‘is-a’ or ‘kind of’ relationships, where 
subclasses represent more specific types of their parent classes. For example, Physical model 
and Mathematical model are subclasses of the Model class.

Figure 2 illustrates three fundamental ontology classes and their hierarchical organization in 
Onto-MS. The simulation component class, through its subclasses Model, Task, and Algorithm, 
captures the core concepts related to simulations. These concepts are further refined into 
more specific subclasses to represent concrete use cases in curly braces. To support multiscale 
representation, Onto-MS introduces two additional classes: Model Entity and Model Scale. 
The Model Entity specifies the physical entities being modeled, whereas the Model Scale 
characterizes the length scales addressed by the simulation methods.

Relationships between concepts were formalized using object properties, which were designed 
to capture the real-world connections derived from domain use cases and multiscale simulation 
workflows. Examples include determine (Task, Model), define (Model, Input for Simulation), is 
Realized Through (Model, Solver), etc. These object properties represent logical and functional 
relationships among different simulation components.

The actual data from simulation use cases (referred to as individuals in the OWL paradigm) are 
not included as part of the ontology. Instead, they are intended to be stored within Kadi4Mat, 
using the ontology structure as a guiding schema.

Each class in the ontology includes a formal definition to convey its meaning unambiguously. 
While class names may vary based on developer preference (e.g., Initial Measurement Results 
or Direct Measurement Results vs. Raw Measurement Results), the underlying semantics should 
remain consistent.

Reusing and extending concepts: An essential aspect of ontology development is the reuse 
of existing concepts that accurately represent the intended domain. The decision to adopt 
particular upper-level concepts was based on their semantic compatibility and alignment 
with concepts and relations in Onto-MS. Equivalent classes in external ontologies were 

Figure 2 Selected class 
hierarchies in Onto-MS. The 
upper part illustrates the 
Simulation Component class 
and its subclasses. The lower 
part depicts the Model Entity 
and Model Scale classes with 
their subclasses. 
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identified using the TIB terminology service (TIB and Leibniz, 2022). These classes were then 
integrated and extended, where necessary, by adding subclasses to meet the requirements 
of Onto-MS while adhering to linked data standards. In this work, upper-level concepts are 
drawn predominantly from EMMO, with additional concepts adopted from Semantic Science 
Integrated Ontology (SIO) (Dumontier et al., 2014), the provenance ontology (PROV-O) (Lebo et 
al., 2013), an ontology for describing the generation of research data within a scientific activity 
(Metadata4Ing) (Iglezakis et al., 2023), and Schema.org (Schema.org, 2019), as needed.

Table 1 lists a representative subset of concepts to illustrate the main reuse and extension 
patterns in Onto-MS. The columns show concepts from upper-level ontologies, their 
corresponding Onto-MS extensions, and the rationale for reuse or adaptation. The table 
provides an overview of how each concept is integrated into Onto-MS and the reasoning behind 
its inclusion. Here, ‘C’ denotes a concept reused or considered as a class, and ‘SC’ indicates a 
concept reused as a subclass.

The ontology was implemented in Protégé (Musen, 2015) and serialized in both OWL (.owl) 
and Turtle (.ttl) formats. Protégé’s built-in ‘Refactor > Move/Copy Axioms’ feature was used to 
transfer relevant axioms from external ontologies into Onto-MS, facilitating concept reuse. To 
visualize the Onto-MS offline version, the OntoGraf plugin in Protégé was employed. OntoGraf 
offers flexibility to generate customized views by filtering specific relationships and node types.

The HermiT reasoner (integrated within Protégé) was used to validate the ontology and infer 
implicit axioms. The Wizard for documenting ontologies (Widoco) (Garijo, 2017) was utilized to 
generate a structured template for ontology documentation, while WebVOWL was adopted to 
provide an interactive visualization of the online version. Onto-MS documentation is maintained 
on GitHub, ensuring version control, transparency, and open access.

Additional tools used for ontology conversion and manipulation are discussed in Section 6.2.

Implement and Evaluate Ontology: After completing all the steps, Onto-MS was implemented 
and evaluated against the criteria defined in step 2 (Purpose and Requirements). The evaluation 
confirmed that Onto-MS met all the requirements and successfully fulfilled its intended 
purposes, such as standardizing terminology in the multiscale simulation domain, enhancing 
interdisciplinary communication, and supporting the construction of knowledge graphs or 
ontology instantiation in an Electronic Notebook (ELN).

Ontology Refinement: Onto-MS will be refined at regular intervals through a collaborative 
process involving domain experts, end-users, and an ontologist. The refinement process will 
cover validation against evolving research requirements and use cases. It will also consider 
incorporating new knowledge, a comprehensive review of class hierarchies and relations, 
and semantic alignment with upper-level ontologies. All modifications will be versioned 

ONTOLOGY 
NAME

CONCEPT REUSED ONTO-MS EXTENSION RATIONALE

EMMO Component (C) Simulation Component (SC) To represent constituents of 
simulation systems

EMMO Parameter (C) Parameter for Solver (SC) Solver-specific needs

EMMO+PROV-O Participant (C) Agent (SC) - Aligned with PROV Agent to 
represent responsible participant 
in processes

PROV-O Organization (SC) Research Group SC To represent research teams 
within institutions

OSMO Granularity level (C) Used as Model Scale C To represent multiscale 
simulation methods

SIO Objective (C) Task Objective (SC) To specify the objectives of 
simulation tasks

Metadata4Ing Method (C) Method (C) To describe the method used in 
simulation

Schema.org Research Project (C) POLIS (SC) To support interoperability at the 
project level

Table 1 External ontologies 
and their concepts reused or 
extended in Onto-MS, along 
with the rationale for their 
inclusion. (C) denotes class 
and (SC) denotes subclass.

https://Schema.org
https://Schema.org
https://Schema.org
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and documented. They will be made publicly available on the webpage and in the Onto-MS 
GitHub repository. This approach ensures that Onto-MS remains scientifically current, accurate, 
interoperable, and aligned with emerging community standards. For detailed documentation 
and future updates, readers are encouraged to visit the official webpage (Noman, 2023).

Figure 3 illustrates the ontology development lifecycle adopted for Onto-MS. It encompasses all 
the essential stages and highlights the cyclic and iterative nature of the development process. 
The cyclic aspect indicates that development is continuous, with each cycle building upon the 
previous one. In contrast, the iterative nature implies that certain steps should be repeated to 
achieve high quality and robustness. However, not all stages in the lifecycle are equally iterative. 
Stages such as ontology design, knowledge analysis, reusing concepts, and evaluation may 
occur frequently, whereas defining the domain, scope, and requirements typically happens 
less often. It is crucial to recognize when to conclude the development process, as excessive 
cycles and iterations can lead to unnecessary complexity, potentially reducing the ontology’s 
acceptance among its intended audience. Therefore, it is essential to ensure that the ontology 
maintains its ease of use for users. 

5.2. ONTOLOGY TRANSFORMATION TO ELN (I.E., KADI4MAT)

To construct a knowledge graph based on the developed ontology (ontology instantiation), 
Onto-MS is converted into Kadi4Mat resources.

Two primary types of Kadi4Mat resources have been utilized in this work: records and collections. 
In Kadi4Mat, a record is the fundamental building block and represents any type of digital or 
digitized object, such as research data, experimental setups, or individual processing steps. 
Each record is described using structured metadata that captures essential information about 
the entity in question. The record can be logically linked to other records, thereby supporting 
traceability and providing context.

In contrast, a collection is used to group multiple records. This enables related data entries, 
such as those belonging to a single experiment or simulation workflow, to be organized into a 
coherent and manageable unit (Brandt et al. 2021). 

This conversion was carried out by using a custom Python script that leverages RDFlib (a Python 
library for parsing RDF data and executing SPARQL queries) (RDFLib documentation, 2025) 
and Kadi-APY (which serves as an interface to the Kadi4Mat platform). The complete script is 
available on Zenodo (Noman, 2024). Key steps in the script are outlined below.

Figure 3 Ontology 
development lifecycle 
followed in Onto-MS, 
highlighting key stages 
such as domain definition, 
modeling strategy, 
implementation, evaluation, 
and refinement.
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Loading the ontology: The Turtle-formatted (.ttl) ontology file is parsed using the RDFlib graph 
object. The script identifies the main IRI of the ontology, which serves as a reference point for 
subsequent processing.

# See script on Zenodo for full implementation
graph = Graph ()
graph.parse (“OntoMS.ttl”, format=”ttl”)
main_iri = graph.value(predicate=RDF.type, object=OWL.Ontology)

Extracting names and descriptions: Once the ontology is loaded (step 1), two helper functions 
are defined to generate human-readable titles and descriptions for Kadi4Mat resources.

get_resource_name selects the first available property to use as the resource name in 
Kadi4Mat. The selection is done in the following order of priority: SKOS prefLabel > RDFS label 
> DCT title > IRI fragment.

get_resource_description populates the description field of records and collections by 
selecting the first available property, prioritizing SKOS definition > RDFS comment > DCTERMS 
description > legacy DC description.

By following this approach, the script ensures that each record and collection in Kadi4Mat is 
annotated with meaningful metadata, as specified by the ontology. 

Name = get_resource_name (graph, entity)
Description = get_resource_description (graph, entity)

Building on this metadata extraction, the next step involves querying restrictions defined in the 
ontology.

Querying ontology restrictions: All OWL subclass restrictions are retrieved through 
a SPARQL query. These restrictions include existential (someValuesFrom), universal 
(allValuesFrom), minimum cardinality (minQualifiedCardinality), maximum cardinality 
(maxQualifiedCardinality), and exact cardinality (qualifiedCardinality). The query returns 
subclass-property-value triples, ensuring that all semantic constraints on subclasses defined in 
the ontology are available for constructing a knowledge graph in kadi4mat.

Restrictions = graph.query(“...SPARQL query capturing all restrictions...”)

Creating Kadi4Mat records and collections: At this step, the script establishes a connection 
with a chosen kadi4Mat instance (here: demo instance) using the kadi-apy library. This setup 
enables interaction with the Kadi4Mat programmatically.

manager = KadiManager(instance=”demo_instance”)

The function create_KGs first creates a collection whose title and description are sourced 
from the ontology (using the name and description variables from step 2). It then iterates 
over subclass-property-value triples to create kadi4Mat resources. This systematic procedure 
transforms ontology classes into interconnected Kadi4Mat records within a collection. 

def create_KGs(suffix=”X”):
# 1. Create a collection
collection = manager.collection (“collection parameters”)

For each subclass–property–value triple:
# 2. Create records for the subclass and the value class
record_1 = manager.record (“record parameters”)
record_2 = manager.record (“record parameters”) 

# 3. Link both records by using the property
record_1.link_record(record_to=record_2.id, name=property_name)

# 4. Add both records to the collection
collection.add_record_link (“record_id”)
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Execution:

The primary knowledge graph function (create_KGs) is executed with an optional suffix 
parameter to ensure unique identifiers. 

create_KGs(suffix=“Provide a unique suffix”)

The resultant Kadi4Mat collection is titled and described in accordance with the ontology, 
containing records connected through relevant object properties.

Selection criteria:

•	 The SPARQL query targets subclass restrictions on terminal (leaf) classes in the ontology. 

•	 Only those leaf classes that are connected to other classes via restrictions are included.

This approach guarantees that the generated knowledge graph encompasses the most 
relevant classes, while the complete class hierarchy remains accessible within the ontology. 
Future iterations of the script will expand support for additional ontology axioms and also offer 
users the flexibility to select classes for knowledge graph construction.

Finally, it is important to note that transforming an ontology into Kadi4Mat resources requires 
certain prerequisites, as detailed in Appendix A. For comprehensive details on the usage 
and configuration of kadi-APY, refer to its official documentation (kadi-apy documentation, 
2025). 

6. RESULTS & DISCUSSION
Although the ontology was constructed in Protégé, the visuals have been reconstructed for 
clarity, providing a simplified perspective. The ontology focuses on three key concepts: Task, 
Model, and Algorithm, as illustrated in Figure 4 and explained below.

1.	 Task 

	 A task is an assignment or activity that requires action to accomplish a particular goal 
within a specific field.

2.	 Model

	 A model in a simulation study represents or abstracts a real-world system, a 
phenomenon, or a process designed to replicate its behavior and characteristics.

3.	 Algorithm

	 An algorithm represents a set of stepwise instructions for solving or accomplishing a task. 
A solver is a specific class of an algorithm.

This section does not cover the definition of every concept in detail; readers are encouraged 
to study the detailed online documentation (Noman, 2023) for comprehensive definitions, 
connections between concepts, and applied restrictions.

Figure 4 illustrates the Task class and its relationships with other classes. Arrows marked with 
‘o’ denote optional properties (or zero cardinality), meaning the associated class values are 
not always required and can be left blank if the information is unavailable. The Task class 
is linked to Material, Material Shape, Method, and Time Interval through appropriate object 
properties with zero cardinality restrictions. It also connects to the Task Objective, Participant, 
and Model classes, where at least one value must be provided. The Participant concept 
encompasses two critical aspects of participation. The first one is the Agent. An agent is not 
necessarily a human and is responsible for an activity to take place. It can be considered the 
driver of the process. Meanwhile, the Tool includes everything that helps an agent perform 
the activity. This can be equipment, a device, or a piece of software. Based on purpose, the 
Task concept can be further specified as either Research Task or Use Case, as shown by the 
subclass relation.
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Figure 5 represents the central simulation components, described at the start of the results 
section, and extends the Model class to show its relationships with other concepts.

It elaborates on the Model class and its relationships with other concepts. A model can be 
specified as Mathematical, Physical, or other type. There are further subdivisions called Published 
and Unpublished Model. For simplicity, only up to three subclasses are shown in the images, but 
additional subclasses, like a Numerical Model, can be added depending on the specific use 
case. A model specifies the Input for Simulation and is implemented through a Solver. The 
Input for Simulation comprises three main concepts: Boundary Condition, Initial Condition, and 
Parameter. The Parameter concept defines constants, material properties, or environmental 
values for simulation input that the model relies on to simulate real-world conditions. Through 
the Model scale and Model Entity, different length scales and entities can be accommodated. 
The Model class can also be connected to the Validation class with zero cardinality, which 
means that validation information is optional. 

Figure 6 depicts the Solver class, a subclass of Algorithm, which can be specified as Numerical, 
Monte Carlo, etc. Additional subclasses like kit Gran, Time-dependent, and Direct Solver are 
documented. The Solver requires software for specific implementations with different access 
restrictions. The various access scenarios can be expressed through the Access Condition 
concept. The Solver operates with defined parameters as described in Input for Simulation, often 
using dedicated software for Solver to solve a task, and produces results classified as Raw or 
Inferred Simulation Measurement Results. Raw Measurement Results are direct measurements 
or observations requiring further analysis and interpretation. Therefore, they require a Post 
Processor or a Tool to do so. Alternatively, Inferred Measurement Results are derived from raw 
results and typically do not need additional processing.

Figure 4 Task view: Shows the 
different concepts in the Onto-
MS. Colored boxes represent 
the concepts imported from 
other ontologies, while 
uncolored boxes are native 
to Onto-MS.  EMMO  
PROV-O  Metadata4Ing 

 SIO  Onto-MS. The 
color of the arrow signifies 
object properties or subclass 
relationships.

Figure 5 Model view: Shows 
the different concepts in 
the Onto-MS. Colored boxes 
represent the concepts 
imported from other 
ontologies, while uncolored 
boxes are native to Onto-MS. 

 EMMO  OSMO/MODA. .  
MUSICODE  Onto-MS. While 
the color of the arrow signifies 
object property or subclass 
relationship. 
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As detailed in the methodology (see Section 6.2), the ontology has been transformed into 
Kadi4Mat resources. Figure 7 illustrates these conversion results, where each colored circle 
represents a selective ontology class, arrows indicate directional relationships, and link names 
correspond to object properties in Onto-MS.

When presented in their raw form, ontologies can overwhelm users with large numbers of 
classes, complex relationships, and intricate graph structures. As a result, many developed 
ontologies remain theoretical artifacts and rarely find their way into daily research practice. To 
avoid this outcome, the integration of Onto-MS in Kadi4Mat was indispensable. This integration 
enables Onto-MS to operate within real research environments and supports its practical 
adoption by researchers. In addition, it facilitates straightforward ontology instantiation and 
knowledge graph generation. Onto-MS in Kadi4Mat enhances the accessibility, usability, and 
structural organization of relevant data resources for end users. 

Previously, metadata from various simulation projects, often produced by the members of the 
same research group, was stored in free-text or inconsistent formats, limiting both reusability 
and discoverability. By annotating simulation records with Onto-MS, the ELN now imposes 
a shared, semantically rich structure, enabling precise querying and reducing the need for 
preprocessing.

Onto-MS has already been employed to describe a substantial number of simulation use cases 
currently stored within Kadi4Mat, and this number is expected to grow. Figures 8–11 illustrate 
a representative case, where simulations were performed to investigate the thermochemical 
evolution of microstructure and chemical segregation during dendritic solidification in laser 
beam welding. Due to space constraints, the original 18 simulation records have been 
consolidated into four, and metadata fields have been selectively displayed to limit the visual 
complexity of the figures.

Figure 6 Solver view: Shows 
the different concepts in 
the Onto-MS. Colored boxes 
represent the concepts 
imported from other 
ontologies, while uncolored 
boxes are native to Onto-MS. 

 EMMO  TEMA  Onto-
MS. The arrow’s color signifies 
object property or subclass 
relationship.

Figure 7 Onto-MS as ‘onto-ms’ 
collection in Kadi4Mat, where 
specific ontology classes are 
represented in records (shown 
in colored circles), and object 
properties are links between 
records in this collection.
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To apply the ontology structure to other similar scenarios, users can replicate the existing 
collection and modify the record metadata to suit their specific use case requirements.

The task record, as shown in Figure 8, consists of ontology classes such as Task Objective, 
Material, Material Geometry, Method, Time Interval, and Agent. Figure 9, in addition, 
presents the Model record, which includes the Model Entity, Model Type, and Model Validation 
classes. 

The Solver record, as shown in Figure 10, consists of ontology classes such as Software for 
Solver, Access Condition, and the Input for Simulation class, which is further divided into 
Boundary Condition, Initial Condition, and Parameter, in accordance with Onto-MS. Finally, 
Figure 11 presents the Results of the simulation use case, incorporating ontology classes such 
as Raw Measurement Results, Tool, and Inferred Measurement Result. 

Figures 8–11 reinforce that Onto-MS can effectively capture and standardize data across 
diverse simulation use cases.

Figure 8 Representation of a 
Task record from the Onto-MS 
ontology collection, where 
classes such as Method, 
Material Shape, and Geometry 
have been consolidated 
into a single record for 
demonstration purposes.

Figure 9 Representation of 
the Model record from the 
Onto-MS ontology collection in 
Kadi4Mat, which consolidates 
related classes or records such 
as Model Type, Model Entity, 
Simulation Model Validation, 
and others.
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Onto-MS is designed for multiscale simulations, as illustrated in Figure 12 below. A model class 
in the ontology is linked to the model entity (shown in Figures 5 and 9). It organizes model 
entities across different length scales, such as Atomistic, Electronic, Nano, and Micro, enabling 
the integration of information about diverse simulation methods. For instance, simulation 
methods from the NVPC project in POLIS (‘POLiS - Cluster of Excellence’, 2019), such as the 
density functional theory (DFT), the phase-field method (PFM), and pseudo-3D (P3D), can be 

Figure 10 Representation of 
the Solver record from the 
Onto-MS ontology collection 
in Kadi4Mat, encompassing 
related classes or records such 
as Input for Simulation (e.g., 
Boundary Condition), Software, 
and Access Condition.

Figure 11 Represents a 
Measurement Result record 
from the Onto-MS ontology 
collection in Kadi4Mat, which 
consolidates ontology classes 
or records such as Raw 
Measurement Results, Tool for 
Post-Processing, and Inferred 
Measurement Results.
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appropriately categorized under their respective length scales. Although only a few methods 
are depicted, Onto-MS is highly extensible and can accommodate numerous other simulation 
techniques.

The ontology provides detailed specifications for each method through specific classes. For 
instance, the Phase Field Model (under the nanoscale) is linked to other suitable ontology 
classes via predefined ontology linkages, with a similar approach used for all methods. The black 
arrows in Figure 12 indicate areas where further subclass relationships and object properties 
exist in Onto-MS but are not shown due to space constraints. Readers should refer to the online 
documentation for a comprehensive overview of how the NVPC use case is structured using 
Onto-MS.

6.1. LIMITATIONS AND PRACTICAL CHALLENGES

Onto-MS has been designed to address the needs of simulation users who aim to describe 
the use-case-specific data using an ontology. While it includes a broad range of domain-level 
concepts, it does not include all application-specific concepts. For example, an application 
ontology can be built only to cover simulation model selection and parameters.

The concepts and relationships within Onto-MS have been thoughtfully developed to cover 
key aspects of multiscale simulation in materials science. Nevertheless, users may encounter 
scenarios where existing Onto-MS do not fully capture their specific data or needs. To address 
such issues, ontology is designed for extensibility, allowing the seamless addition of new 
concepts and relations. It is expected to become more comprehensive and robust through 
iterative refinement and community feedback.

However, it is essential to acknowledge that no ontology can realistically cover all possible 
scenarios, and a balance must be struck between completeness and practical usability.

Onto-MS integration with Kadi4Mat offers limited flexibility in allowing users to selectively 
designate ontology classes as either data records or metadata attributes. As a result, this can 
occasionally lead to excessive records, potentially making navigation and organization within 
the ELN more effort-intensive. To address this, a future version of the Onto-MS to Kadi4Mat 
transformation is planned to provide greater flexibility in defining which ontology classes 
appear as records or metadata.

Moreover, the reverse mapping from Kadi4Mat back to the ontology, preferably in a triple-
store environment, has not yet been implemented. This backward linkage will ensure semantic 
consistency, enable advanced querying and reasoning, and support bidirectional data 
enrichment between the ontology and the electronic lab notebook system. Integration into 
triple stores is the subject of ongoing research and will be discussed in more detail in future 
work.

Figure 12 Representation 
of Onto-MS multiscale 
capabilities by integrating 
various length-scale 
simulation methods for the 
NVPC project.
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7. CONCLUSION
Despite the abundance of ontologies across various disciplines, researchers and data managers 
still need practical, step-by-step guidance on developing, implementing, and utilizing ontologies, 
particularly in complex, multiscale simulation contexts.

In response to these challenges, the first part of this study provides well-defined procedures 
and strategies for overcoming obstacles associated with the development of multidisciplinary 
ontologies. Simple and easy-to-implement guidelines have been provided to encourage 
beginners to adopt ontology-based data management practices. At the same time, an in-
depth ontology development guide addresses the needs of experienced readers.

The second part of this research article introduces Onto-MS as a practical implementation 
of ontology modeling strategies. It is an ontology designed to formalize multiscale 
simulation concepts by adhering to established standards and integrating linked data 
principles. Onto-MS can seamlessly accommodate a variety of simulation methods. It has 
been incorporated into the Kadi4Mat platform to transform ontology use from a complex 
theoretical exercise into a simple, intuitive, and user-friendly tool. This enables researchers 
to organize, retrieve, and reuse simulation data efficiently within their daily workflow. 
Moreover, this integration directly supports the generation of knowledge graphs based on 
the developed ontology.

This study successfully presented a consistent and thoroughly structured concept with its 
practical implementation. This approach will be further refined in future studies and will serve 
as the basis for building domain ontologies for other multidisciplinary projects, expanding its 
applicability and utility.

APPENDIX A
Prerequisites for ontology conversion to Kadi4Mat:

To convert Onto-MS into Kadi4Mat resources, the following requirements must be completed.

Visit the Kadi4Mat Demo instance and create a user account. After logging in, navigate to 
Settings > Access Tokens and generate a Personal Access Token (PAT) for API authentication. 
Ensure that Python is installed in local environment by running.

Python --version

Then, install the library via the following cli command:

pip3 install kadi-apy

Configure kadi-apy for a specific kadi4Mat instance (e.g., demo instance). Use the following 
commands to create or update host and PAT. 

kadi-apy config create       # Create a basic config file.

kadi-apy config set-host   # Change a host in the config file.

kadi-apy config set-pat     # Change a PAT in the config file.

Run the Conversion Script:

•	 Download the ontology file and rename it Onto-MS.owl.

•	 Download the Python conversion script from Zenodo.

•	 Place both files in the same directory. 

•	 Execute the script to initiate the process.

Outcome:

Upon successful execution, a new collection will be created in the Kadi4Mat demo instance, 
containing 18 structured records derived from the Onto-MS ontology.
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