New Quantitative Cost-Impact Effectiveness Indexes to Assist in Publication Decisions by Researchers in the Open Access Era

Julia C. Hardy, Christine Kim Vu, Dong Wang

Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Summary

Scientific publications have become the backbone of scientific communication since their foundation in 1665. The three main models for publishing are Traditional (or subscription-based), Open Access (OA), and Hybrid. As of July 1, 2025, the NIH requires that Author Accepted Manuscripts resulting from NIH-funded research be immediately publicly available. To comply with this new requirement, authors may be forced to pay an Article Processing Charge (APC) to publish Open Access, ranging from ~\$2000 to ~\$13,000 per article. With this change to the scientific publishing landscape, publishing costs shift from subscribers to authors causing authors to re-evaluate how they choose which journal to publish in. Here we analyze 75 popular biomedical journals to evaluate the publishing costs compared to the scientific impact (i.e. Impact Factor, CiteScore, SNIP) illustrated by three different Cost-Impact Effectiveness (CIE) metrics (APC/IF, APC/CS and APC/SNIP). To complement the new open access policy, our goal is to provide a resource to help the scientific community evaluate the impact-based cost effectiveness of different Open Access options during their journal selection process.

Introduction

Scientific research is the driving force for numerous biomedical and technological advances. As the major communication platform for scientists, scientific publications are crucial for sharing cutting-edge discoveries and knowledge to the scientific community at large. The world's first and longest-running scientific journal, *Philosophical Transactions*, was first launched in 1665 (1). Over the past 360 years, the academic publishing process has continuously evolved.

Nowadays, there are three main publishing models of journals: Traditional (or subscription-based), Open Access (OA), and Hybrid (2, 3). In the Traditional, subscription-based model, articles can only be accessed by subscribers of the journal or by users who pay per article. Alternatively, the Open Access model allows free public access to research articles. The hybrid model offers both subscription-based and open access publishing options through the journal.

There are different 'routes' to open access publishing. Under "Gold Open Access," the final published version is made freely available immediately on the journal's website but typically requires authors to pay an Article Processing Charge (APC). Many hybrid journals allow authors to choose if they would like to publish through subscription-based or "Gold Open Access" publishing avenues. Some journals also allow "Green Open Access," also known as self-archiving, that allows authors to deposit an accepted version (submitted manuscript, author accepted manuscript (AAM), or the final published pdf) into a repository, often with an embargo time. Most subscription-based publishing release accepted manuscripts to the public after a 6 or 12-month embargo period, allowing authors to publicly share their accepted manuscripts without paying an APC (4, 5).

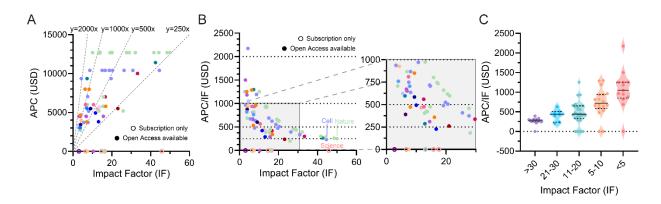
Over the past two decades, open access publishing has grown rapidly, with many journals shifting from subscription-based to open access models (4, 6). While readers benefit from free access, the cost burden has shifted to authors through often substantial APCs (7). In promoting transparency in research, funding agencies and institutions-including HHMI (8), Wellcome Research (9), Max-Planck-Gesellschaft Society (10), University of California (11), and NIH (12) – have Public Access Policy mandates that Author Accepted Manuscripts to be freely available for public access. Notably, NIH requires that Author Accepted Manuscripts resulting from NIH-funded research be immediately publicly available as of July 1, 2025 (13, 14).

Researchers now face mounting financial stress from two fronts: the uncertainty of budget cutting of grants and an increase of publication costs. Indeed, open access publication costs could become an unbearable burden and a much more significant portion of total research. In the last year, open access only journals have raised their APC by 6.5% with a maximum APC of \$8,900 and hybrid journals have raised their APC by 3% with a maximum APC of \$12,690 (15). Several major publishers are indicating that if an author has a zero-embargo mandate, the authors will be forced to select "Gold Open Access" publishing and therefore pay the APC. Other publishers are considering charging a fee to deposit the AAM without an embargo. The shift to open access publishing will inevitably change how authors evaluate journals for their publication choice. In addition to considerations on where to publish (e.g. disciplinary preference, scientific reputation of journals, time for peer-review processes), researchers will also need to take the publication cost as another critical factor into consideration during scientific publication (16, 17).

NIH recognizes that peer-reviewed publishing routes may result in publication costs, including but not limited to APCs, and provides some general "Points to Consider" for researchers and institutions in assessing reasonable costs for publication in relation to NIH award (18). In addition, NIH guidance clarifies that submitting Author Accepted Manuscripts to PubMed Central is free and that journals or publishers should not require a fee solely to deposit those manuscripts (19). Certain types of publisher charges tied to

NIH-mandated public access are explicitly identified as unallowable under NIH cost principles (18, 20).

The NIH performed two analyses to evaluate recent publication costs using publicly available data from the Directory of Open Access Journals (7) and the United States Treasury Department. The first analysis looked at 7,350 journals worldwide and found the average APC is \$1235.51 (\$0.01 to \$8,900) with a median of \$950 (20). Looking at the 598 journals published in the United State, the average APC was \$2,176.84 and a median of \$2,040 (20). For the second analysis, the NIH looked at more than 1500 R01 grants awarded in Fiscal Year (FY) 2025 as of July 8, 2025 to evaluate the publication costs requested by NIH applicants (20). This showed that publication costs ranged from \$0 to \$12,000 and estimated that the average cost requested per publication was \$2,565.07 to \$3,104.06 (20). Moreover, NIH leadership has signaled further action to limit the financial burden on researchers and taxpayers by proposing a cap on allowable publication costs beginning in FY2026, and NIH has solicited input on how to maximize research funds by limiting allowable publishing costs (21). Unfortunately, there is a lack of quantitative metrics to evaluate the cost and impact of each publication, which would assist researchers with publication choice.


Here we propose three Cost-Impact Effectiveness (CIE) metrics that take into consideration both the APC and the journal's impact, APC/IF, APC/CS and APC/SNIP, respectively. We hope that these new CIE metrics can assist researchers in choosing target journals in a cost-impact effective way.

Impact-Based Cost Effectiveness Metrics of Journals

A journal's scientific impact is usually evaluated by looking at how often it is referenced in other scientific works. The most common journal impact metric is the Journal Impact Factor by Clarivate based on data from Web of Science. The Journal Impact Factor (IF) is defined as all citations to a journal in the current year to publications from the previous two years compared to scholarly items (articles, reviews, and proceedings papers) published in the previous two years (22). Therefore, a higher IF usually indicates that the journal has a higher impact on the scientific community.

To better understand whether a journal's scientific impact justifies its publishing cost, we first surveyed 75 representative biomedical journals and explored the relationship between APC and IF (Figure 1A, Supplemental Tables 1-3). Unfortunately, eLife did not receive an impact factor or CiteScore metric in 2025, so it is not included in the APC/IF and APC/CS metrics. Of the 75 journals, 70 (93.3%) have "Gold Open Access" options, with 48 (64%) have hybrid publishing options and 21 (28%) are open access only. The open access journals have a wide distribution of APCs ranging from ~\$2000 to

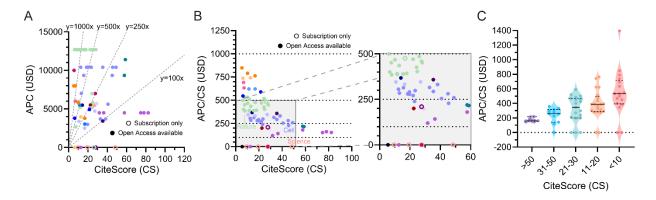

~\$13,000 per manuscript, except for the 6 (8%) subscription-only journals, such as Science, that have no APC. Additionally, 4 (5.3%) subscription-only journals offer embargo-free "Green Open Access." Of our 75 surveyed journals, the median of APC for open access journals is \$5790. To further assess the CIE metrics of each journal, we calculated the impact-normalized APC cost (APC/IF). APC/IF has an inverse relationship with impact-based cost effectiveness (Figure 1A and Supplemental Table 1). We then plotted the impact-normalized APC cost (APC/IF) vs IF (Figure 1B). The APC/IF ranges from \$0 to \$2174.42, with the median at \$561 and \$303 (for 25% percentile) among 75 journals we surveyed. To further analyze the pattern of APC/IF, we divided APC/IF into five bins based on IF values (Figure 1C). Interestingly, we observed the increasing IFnormalized APC medians and ranges with the decreasing IF values (Figure 1C). For the bin 1 journals (IF above 30), the median APC/IF is \$277.67 with a range from \$0 to \$395.33. For the bin 2 journals (IF between 21 and 30), the median APC/IF rises to \$427.59 with a range from \$200.39 to \$427.83. In contrast, for the bin 5 journals (IFs are less than 5), the median is \$1051.11 with the widest range distribution (\$0 to \$2174.42). as seen in Figure 1C. In general, lower APC/IF values indicate higher impact-based cost effectiveness.

Figure 1. Cost-Impact evaluation of 74 representative biomedical journals using APC and IF. A. Article processing charge (APC) vs impact factor (IF) to illustrate the relationship and distribution between the publication cost and scientific impact of 74 representative biomedical journals. Each publisher of representative journals is represented by a different color. B. Impact-normalized processing charge (APC/IF) vs impact factor (IF) to show the impact-based cost effectiveness of different biomedical journals. C. Impact-normalized processing charge distribution based on five different impact factor bins.

While Journal Impact Factor is the most common journal impact metric, other metrics have been developed to address certain limitations of IF and provide additional insights. For example, CiteScore (CS) was developed by Scopus and is calculated by dividing the number of citations to documents published in a 4-year period by the number of documents in same 4-year period. The longer and symmetrical time-period of the

calculation allows the sustained impact of a journal to be illustrated. Again, to understand if a journal's scientific impact justifies its publishing cost, we performed a similar analysis of the relationship between a journal's CiteScore and APC (Figure 2A and Supplemental Table 2). We also calculated the normalization of APC to the CS impact (APC/CS) vs CS allows authors to better evaluate the impact-based cost-effectiveness of different journals, as seen in Figure 2B. The APC/CS values showed similar patterns to APC/IF. The APC/CS ranges from 0 to 1395.52, with a median value of \$346.05, and \$218.90 of 25% percentile. The bin-based APC/CS analysis also revealed a reverse relationship between median APC/CS and CS values (Figure 2C). In bin 1 (CSs above 50), they have an APC/CS median of \$171.36 and a range from \$152.41 to \$219.93. Bin 2 (CSs from 31 to 50) have an APC/CS median of \$258.98 and range from \$0 to \$358.47. When the CS is less than 10 (bin 5), the APC/CS has a median of \$715.12 and ranges from \$0 to \$1395.52. In general, we found APC/IF and APC/CS metrics are comparable. We found that 13 out 20 journals are ranked in the top 20 of both APC/IF and APC/CS.

Figure 2. Cost-Impact evaluation of 74 popular biomedical journals using APC and CS. A. Article processing charge (APC) vs CiteScore (CS) to illustrate the relationship between a biomedical journal's cost and scientific impact. Each publisher of our representative journals is represented by a different color. B. Impact-normalized processing charge (APC/CS) vs CiteScore (CS) to show the impact-based cost effectiveness of different biomedical journals. C. Impact-normalized processing charge distribution based on five different CS bins.

As APC/IF and APC/CS indexes are directly related to IF and CS, respectively, the impact-normalized indexes have the same intrinsic limitations as IF and CS (23). For example, IF and CS, as well as APC/IF and APC/CS, do not provide information about the quality or impact of individual articles published within that journal. Furthermore, because the citation practices and publication rates also differ significantly across disciplines, APC/IF and APC/CS cannot be used to compare journals from different fields. To mitigate this potential issue, we considered using Source Normalized Impact per Paper (SNIP) as an alternative metric for journal impact. SNIP enables direct comparison of

journals in different subject fields. We computed APC/SNIP (Supplemental Table 3) and observed a similar pattern as other two CIE metrics (APC/IF and APC/CS). Finally, all CIE metrics (APC/IF, APC/CS, and APC/SNIP) have intrinsic biases toward journals that have high impact factors/cite scores. Therefore, as a guideline, we recommend using APC/CS or APC/IF cautiously for compatible journals in the same field (instead of different fields). Since all CIE metrics don't have information of scope, researchers should use their own scientific judgement for selecting best fit journals or consult with journal editors for further information.

Looking Forward

Scientific research stands as one of the most powerful drivers of advancements in medicine, technology, and public health. The shift toward open access publishing, while grounded in important ideals of transparency and public accessibility, has also introduced new financial challenges for researchers, particularly for labs and institutions with limited resources.

Sustaining open access for scientific publishing will require coordinated action across multiple stakeholders including government, funding agencies, publishers, and universities/institutions to work together to develop better and economic-efficient and sustainable models for scientific publishing. Solutions could include greater support for APCs from funding agencies and institutions, broader contribution to preprint and AAM repositories, expansion of "Green Open Access" options with a zero-embargo period from publishers.

In the interim, researchers need practical tools to navigate this complex publishing landscape. The Cost-Impact Effectiveness (APC/IF, APC/CS, APC/SNIP) metrics presented here are intended as one such resource—designed to help evaluate journals not only by scientific impact, but by the cost-effectiveness of their scientific impact. These data-driven metrics aim to support informed decision-making, particularly in environments where funding is limited and strategic publishing choices are essential. Next, we aim to create a tool to provide researchers with a convenient way to quickly look up the Cost-Impact Effectiveness metrics for journals of interest and evaluate the respective CIE metrics to help in the journal selection process. Looking ahead, the goal is not only to make science more open, but also to make publishing more cost-effective.

Data Availability

Data is available on request.

Acknowledgements

We would like to acknowledge the Scholarly Communications Librarians at the University of California San Diego Library, especially Karen Heskett, Allegra Swift and Teri Vogel of the UC San Diego Open Access Policy Team, for lending their expertise and providing the critical advice necessary to this commentary. This work was supported the Molecular Biophysics Training Grant (NIH T32 GM139795 to C.K.V.) and the Cancer Cell Signaling and Communication Training Program (NIH T32CA009523 to J.C.H.).

Author Contributions

J.C.H. compiled the data, analyzed the data and made the figures. D.W. oversaw the data collection and analysis. J.C.H. and C.K.V. wrote the manuscript. J.C.H., C.K.V., and D.W. edited the manuscript.

Corresponding Author

Correspondence to Dong Wang at dow003@health.ucsd.edu.

Supplemental Table 1. Cost-Impact Effectiveness Metric APC/IF. The journal publication cost (APC) normalized to impact factor (APC/IF) per journal, sorted from lowest APC/IF to highest APC/IF.

			APC (USD, excluding taxes):	
			Open Access	
Journal Family	Journal	APC/IF*	Publication Cost	Impact Factor (IF)*
AAAS	Science	0.00	0	45.8
AAAS	Science Immunology	0.00	0	16.3
AAAS	Sci Transl Med	0.00	0	14.6
AAAS	Sci Signal	0.00	0	6.6
ACS Press	ACS Central Science	0.00	0	10.4
ASM Press	J. Bacteriol	0.00	0	3
Nature Press	Nature Protocols	0.00	0	16
Royal Socierty of			0	
Chemistry	Chem Sci	0.00		7.4
Nature Press	Cell Research	200.39	5,190	25.9
Cell Press/Elsevier	Cancer Cell	233.71	10,400	44.5
ASH	Blood	238.10	5,500	23.1
Nature Press	Nature Medicine	253.80	12,690	50
Nature Press	Nature	261.65	12,690	48.5
Cell Press/Elsevier	Cell	268.24	11,400	42.5
Nature Press	Nature Catalysis	287.10	12,690	44.2
ACS Press	J. Am. Chem. Soc.	288.46	4,500	15.6
Oxford Press	Nucleic Acids Research	290.23	3,802	13.1
AACR	Cancer Discovery	300.30	10,000	33.3
Nature Press	Nature Biotechnology	304.32	12,690	41.7
Cell Press/Elsevier	Cell Metab	336.57	10,400	30.9
Wiley Online Library	Angew Chem Int Edit	342.60	5790	16.9
Nature Press	Cell Death Differ	375.97	5,790	15.4
Nature Press	Leukemia	387.31	5,190	13.4
Nature Press	Nature Methods	395.33	12,690	32.1
Cell Press/Elsevier	Immunity	395.44	10,400	26.3
ASCI	J. Clin. Invest.	419.12	5,700	13.6
AACR	Cancer Research	421.69	7,000	16.6
Oxford Press	Plant Cell	425.34	4,934	11.6
AAAS	Science Advances	436.00	5,450	12.5
Nature Press	Nature Genetics	437.59	12,690	29
Nature Press	Nature Communications	445.22	6,990	15.7
Nature Press	Nature Immunology	445.22	12,690	27.6
Cell Press/Elsevier	Chem	477.04	9,350	19.6
Cold Spring Harbor	Chem	477.04	·	19.0
Labratory	Genes & Dev.	480.52	3,700	7.7
Cell Press/Elsevier	Cell Stem Cell	509.80	10,400	20.4
Wiley Online Library	Aging Cell	533.80	3,790	7.1
Cell Press/Elsevier	Cell Host Microbe	556.15	10,400	18.7
Rockefeller				
University Press	J Exp Med	566.04	6,000	10.6
National Academy of			5,495	
Sciences	PNAS	603.85	-,	9.1

Cell Press/Elsevier	Mol Cell	626.51	10,400	16.6
Nature Press	Nature Chemistry	628.22	12,690	20.2
Nature Press	Nature Neuroscience	634.50	12,690	20.2
Cell Press/Elsevier	AJHG	635.80	5,150	8.1
Nature Press	Nature Aging	654.12	12,690	19.4
Nature Press	Nature Microbiology	654.12	12,690	19.4
ACS Press	J. Med. Chem	661.76	4,500	6.8
Nature Press	Nature Cell Biology	664.40	12,690	19.1
ACS Press	Anal Chem	671.64	4,500	6.7
Cold Spring Harbor	, and one	07 1.01	•	0
Labratory	Genome Res	672.73	3,700	5.5
Nature Press	Sci Reports	689.74	2,690	3.9
Cell Press/Elsevier	Neuron	693.33	10,400	15
PLoS	PLoS Biol	763.89	5,500	7.2
Cell Press/Elsevier	Cell Reports	814.49	5,620	6.9
Nature Press	Oncogene	820.55	5,990	7.3
PLoS	PLoS Genet	822.43	3,043	3.7
Elsevier/American				
Society for			3,430	
Biochemistry and Molecular Biology	J. Biol. Chem.	879.49		3.9
Wolcoular Blology	Nature Chemical	010.40	40.000	0.0
Nature Press	Biology	926.28	12,690	13.7
Nature Press	Nature Plants	933.09	12,690	13.6
Cell Press/Elsevier	Curr Biol	937.33	7,030	7.5
Rockefeller			6,000	
University Press	J Cell Biol	937.50	0,000	6.4
Royal Socierty of	Chem Commun	948.64	3,984.30	4.2
Chemistry Wiley Online Library	EMBO J.	962.65	7,990	8.3
Cell Press/Elsevier	Biophysical Journal	967.74	3,000	3.1
Elsevier	J. Mol. Biol.	1051.11	4,730	4.5
ACS Press	ACS Chem. Biol.	1184.21	4,500	3.8
Cell Press/Elsevier	Dev Cell	1195.40	10,400	8.7
ACS Press	J. Org. Chem.	1250.00	4,500	3.6
Wiley Online Library	Chem-Eur J	1254.05	4640	3.7
Elsevier	DNA repair	1255.56	3,390	2.7
	Nature Structural		•	
Nature Press	Molecular Biology	1256.44	12,690	10.1
Wiley Online Library	EMBO Rep	1288.71	7,990	6.2
Cell Press/Elsevier	Cell Chem Biol	1298.61	9,350	7.2
ACS Press	Biochemistry	1500.00	4,500	3
Cell Press/Elsevier	Structure	2174.42	9,350	4.3

*Notes:

APC/IF: publication cost (APC) per impact factor

Supplemental Table 2. Cost-Impact Effectiveness Metric APC/CS. The journal publication cost (APC) normalized to CiteScore (APC/CS) per journal, sorted from lowest APC/CS to highest APC/CS.

			APC (USD, excluding taxes):	
Journal Family	Journal	APC/CS*	Open Access Publication Cost	CiteScore (CS)*
AAAS	Science	0.00	0	48.4
AAAS	Science Immunology	0.00	0	26.9
AAAS	Sci Transl Med	0.00	0	27.9
AAAS	Sci Signal	0.00	0	9.5
ACS Press	ACS Central Science	0.00	0	19.3
ASM Press	J. Bacteriol	0.00	0	5.5
Nature Press	Nature Protocols	0.00	0	27.6
Royal Socierty of			0	
Chemistry	Chem Sci	0.00	U	12.6
Oxford Press	Nucleic Acids Research	119.94	3,802	31.7
Nature Press	Cell Research	142.58	5,190	36.4
Cell Press/Elsevier	Cell	152.41	11,400	74.8
Nature Press	Nature Medicine	154.00	12,690	82.4
Nature Press	Nature	162.48	12,690	78.1
Cell Press/Elsevier	Cancer Cell	180.24	10,400	57.7
Nature Press	Cell Death Differ	199.66	5,790	29.0
ACS Press	J. Am. Chem. Soc.	200.00	4,500	22.5
Wiley Online Library	Angew Chem Int Edit	209.78	5790	27.6
Nature Press	Nature Biotechnology	215.82	12,690	58.8
Nature Press	Nature Catalysis	219.93	12,690	57.7
Cell Press/Elsevier	Cell Metab	228.57	10,400	45.5
ASH	Blood	239.13	5,500	23.0
Cell Press/Elsevier	Immunity	254.90	10,400	40.8
Nature Press	Nature Methods	258.98	12,690	49.0
Rockefeller		074.40	6,000	00.4
University Press	J Exp Med	271.49		22.1
AAAS	Science Advances	278.06	5,450	19.6
Nature Press	Leukemia	280.54	5,190	18.5
Nature Press Cold Spring Harbor	Nature Genetics	281.37	12,690	45.1
Labratory	Genes & Dev.	284.62	3,700	13.0
ASCI	J. Clin. Invest.	290.82	5,700	19.6
Cell Press/Elsevier	Cell Host Microbe Nature	293.79	10,400	35.4
Nature Press	Communications	298.72	6,990	23.4
Wiley Online Library	Aging Cell	305.65	3,790	12.4
Oxford Press	Plant Cell	314.27	4,934	15.7
Cell Press/Elsevier	Cell Stem Cell	316.11	10,400	32.9
Nature Press National Academy of	Nature Immunology	332.20	12,690	38.2
Sciences	PNAS	333.03	5,495	16.5
Cold Spring Harbor	O D	0.45.70	3,700	40.7
Labratory	Genome Res	345.79		10.7
Cell Press/Elsevier	Chem	346.30	9,350	27.0

			40.000	
Nature Press	Nature Neuroscience	358.47	12,690	35.4
Cell Press/Elsevier	AJHG	367.86	5,150	14.0
PLoS	PLoS Genet	385.19	3,043	7.9
ACS Press	Anal Chem	387.93	4,500	11.6
Nature Press	Oncogene	388.96	5,990	15.4
ACS Press	J. Med. Chem	391.30	4,500	11.5
AACR	Cancer Research	393.26	7,000	17.8
Nature Press	Sci Reports	401.49	2,690	6.7
AACR	Cancer Discovery	403.23	10,000	24.8
Cell Press/Elsevier	Mol Cell	426.23	10,400	24.4
Cell Press/Elsevier	-	435.66	5,620	12.9
Elsevier/American	Cell Reports	435.00	3,020	12.9
Society for				
Biochemistry and			3,430	
Molecular Biology	J. Biol. Chem.	451.32		7.6
Nature Press	Nature Chemistry	451.60	12,690	28.1
Nature Press	Nature Microbiology	459.78	12,690	27.6
Elsevier	J. Mol. Biol.	468.32	4,730	10.1
Cell Press/Elsevier	Neuron	470.59	10,400	22.1
Wiley Online Library	EMBO J.	475.60	7,990	16.8
Nature Press	Nature Aging	486.21	12,690	26.1
Cell Press/Elsevier	Biophysical Journal	500.00	3,000	6.0
Nature Press	Nature Cell Biology	503.57	12,690	25.2
Rockefeller	ratare cen blology	000.07		20.2
University Press	J Cell Biol	512.82	6,000	11.7
Nature Press	Nature Plants	520.08	12,690	24.4
PLoS	PLoS Biol	533.98	5,500	10.3
Royal Socierty of				
Chemistry	Chem Commun	538.42	3,984.30	7.4
Elsevier	DNA repair	546.77	3,390	6.2
	Nature Chemical		12,690	
Nature Press	Biology	590.23	•	21.5
Cell Press/Elsevier	Curr Biol	622.12	7,030	11.3
Cell Press/Elsevier	Dev Cell	622.75	10,400	16.7
ACS Press	ACS Chem. Biol.	633.80	4,500	7.1
Wiley Online Library	Chem-Eur J	692.54	4640	6.7
ACS Press	J. Org. Chem.	737.70	4,500	6.1
Cell Press/Elsevier	Cell Chem Biol	742.06	9,350	12.6
	Nature Structural		12,690	
Nature Press	Molecular Biology	764.46	•	16.6
Wiley Online Library	EMBO Rep	791.09	7,990	10.1
ACS Press	Biochemistry	849.06	4,500	5.3
Cell Press/Elsevier	Structure	1,395.52	9,350	6.7

*Notes:

APC/CS: publication cost (APC) per CiteScore

Supplemental Table 3. Cost-Impact Effectiveness Metric APC/SNIP. The journal publication cost (APC) normalized to Source Normalized Impact per Paper (APC/SNIP) per journal, sorted from lowest APC/SNIP to highest APC/SNIP.

Learned Face the	Lauren	A DO (ONUD)	APC (USD, excluding taxes): Open Access	Source Normalized Impact per
Journal Family AAAS	Journal Science	APC/SNIP* 0.00	Publication Cost 0	Paper (SNIP)* 6.623
AAAS	Science Immunology	0.00	0	2.349
AAAS	Sci Transl Med	0.00	0	2.662
AAAS	Sci Signal	0.00	0	1.265
ACS Press	ACS Central Science	0.00	0	1.923
ASM Press	J. Bacteriol	0.00	0	0.848
Nature Press	Nature Protocols	0.00	0	3.215
Royal Socierty of	Nature i Totocois	0.00		3.213
Chemistry	Chem Sci	0.00	0	1.464
,	Nucleic Acids		3,802	
Oxford Press	Research	806.53		4.714
eLife	eLife	1,155.27	2,500	2.164
Nature Press	Nature	1,248.89	12,690	10.161
Nature Press	Cell Research	1,367.95	5,190	3.794
Nature Press	Nature Medicine	1,457.45	12,690	8.707
Cell Press/Elsevier	Cell	1,495.28	11,400	7.624
Nature Press	Nature Methods	1,511.61	12,690	8.395
ASH	Blood	1,586.39	5,500	3.467
ACS Press	J. Am. Chem. Soc.	1,724.14	4,500	2.610
Cell Press/Elsevier	Cancer Cell	1,815.64	10,400	5.728
Nature Press	Nature Genetics Nature	1,910.57	12,690	6.642
Nature Press	Biotechnology	1,973.25	12,690	6.431
AAAS	Science Advances	2,067.53	5,450	2.636
Cell Press/Elsevier	AJHG	2,085.02	5,150	2.470
Nature Press	Leukemia	2,104.62	5,190	2.466
Cell Press/Elsevier	Cell Metab	2,117.26	10,400	4.912
Nature Press	Cell Death Differ	2,187.38	5,790	2.647
Oxford Press	Plant Cell	2,196.79	4,934	2.246
Nature Press	Sci Reports Nature	2,217.64	2,690	1.213
Nature Press	Communications	2,219.05	6,990	3.150
Nature Press National Academy of	Nature Catalysis	2,272.16	12,690	5.585
Sciences	PNAS	2,305.92	5,495	2.383
Wiley Online Library	Angew Chem Int Edit	2,348.88	5790	2.465
Wiley Online Library	Aging Cell	2,426.38	3,790	1.562
AACR	Cancer Discovery	2,427.18	10,000	4.120
Cell Press/Elsevier Cold Spring Harbor	Immunity	2,593.52	10,400	4.010
Labratory	Genes & Dev.	2,596.49	3,700	1.425
ASCI	J. Clin. Invest.	2,621.90	5,700	2.174
Cold Spring Harbor Labratory	Genome Res	2,696.79	3,700	1.372

Nature Press	Nature Neuroscience	2,697.13	12,690	4.705
ACS Press	J. Med. Chem	2,903.23	4,500	1.550
PLoS	PLoS Genet	2,909.18	3,043	1.046
Rockefeller University	I Fam Mad	0.040.54	6,000	4.000
Press	J Exp Med	3,010.54	·	1.993
Cell Press/Elsevier	Cell Stem Cell	3,161.09	10,400	3.290
Nature Press Elsevier/American	Nature Immunology	3,330.71	12,690	3.810
Society for				
Biochemistry and			3,430	
Molecular Biology	J. Biol. Chem.	3,436.87		0.998
Cell Press/Elsevier	Neuron	3,523.04	10,400	2.952
PLoS	PLoS Biol	3,557.57	5,500	1.546
ACS Press	Anal Chem	3,582.80	4,500	1.256
Cell Press/Elsevier	Mol Cell	3,592.40	10,400	2.895
Cell Press/Elsevier	Cell Reports	3,621.13	5,620	1.552
Cell Press/Elsevier	Biophysical Journal	3,640.78	3,000	0.824
Cell Press/Elsevier	Chem	3,682.55	9,350	2.539
Nature Press	Nature Chemistry	3,708.36	12,690	3.422
Cell Press/Elsevier	Cell Host Microbe	3,764.02	10,400	2.763
Nature Press	Nature Microbiology	3,774.54	12,690	3.362
Nature Press	Nature Aging	3,836.15	12,690	3.308
Cell Press/Elsevier	Curr Biol	3,839.43	7,030	1.831
Rockefeller University			6,000	
Press	J Cell Biol	3,942.18	·	1.522
Nature Press	Oncogene	4,116.84	5,990	1.455
AACR	Cancer Research	4,129.79	7,000	1.695
Wiley Online Library	EMBO J.	4,131.33	7,990	1.934
Elsevier	DNA repair	4,149.33	3,390	0.817
Nature Press	Nature Plants	4,152.49	12,690	3.056
Elsevier	J. Mol. Biol.	4,182.14	4,730	1.131
Nature Press	Nature Cell Biology	4,294.42	12,690	2.955
Cell Press/Elsevier	Dev Cell	5,060.83	10,400	2.055
Royal Socierty of Chemistry	Chem Commun	5,101.54	3,984.30	0.781
ACS Press	J. Org. Chem.	5,238.65	4,500	0.751
ACS Press	ACS Chem. Biol.	5,263.16	4,500	0.855
A00 F1633	Nature Chemical	3,203.10		0.000
Nature Press	Biology	5,368.02	12,690	2.364
Wiley Online Library	Chem-Eur J	5,497.63	4640	0.844
,	Nature Structural	,	12 600	
Nature Press	Molecular Biology	6,151.24	12,690	2.063
ACS Press	Biochemistry	6,164.38	4,500	0.730
Wiley Online Library	EMBO Rep	6,459.18	7,990	1.237
Cell Press/Elsevier	Cell Chem Biol	6,915.68	9,350	1.352
Cell Press/Elsevier	Structure	9,589.74	9,350	0.975

*Notes:

APC/SNIP: publication cost (APC) per Source Normalized Impact per Paper (SNIP)

References

- 1. H. Oldenburg, *Epistle dedicatory*. Philosophical Transactions of the Royal Society of London, 1665. **vol. 1**(no. 1): p. pp. i–ii.
- 2. Sarah H. *Open access publication routes*. 2024 [cited 2025]; Available from: https://openaccess.ox.ac.uk/oa-publication.
- 3. American Journal Experts. *Open Access: The Good, the Bad, and the Ugly.* Writing, Publishing and Presenting, 2024 [cited 2025]; Available from: https://bitesizebio.com/34520/open-access-good-bad-ugly/.
- 4. Jisc. *Open Policy Finder*. [cited 2025]; Available from: https://openpolicyfinder.jisc.ac.uk/.
- 5. California Digital Library. *Journal Open Access Lookup Tool*. [cited 2015]; Available from: https://jolt.cdlib.org/osc.
- 6. R. G. Dudley, *The Changing Landscape of Open Access Publishing: Can Open Access Publishing Make the Scholarly World More Equitable and Productive?*Journal of Librarianship and Scholarly Communication, 2021. **9**(1): p. eP2345.
- 7. Directory of Open Access Journals. *Find open access journals & articles*. [cited 2025]; Available from: https://doaj.org/.
- 8. HHMI. *HHMI Announces Open Access Publishing Policy*. News & Stories, 2020 [cited 2025]; Available from: https://www.hhmi.org/news/hhmi-announces-open-access-publishing-policy.
- 9. Wellcome. *Complying with our open access policy*. 2025 [cited 2025]; Available from: https://wellcome.org/research-funding/guidance/open-access-guidance/complying-with-our-open-access-policy.
- 10. Max Planck Society. *Open Access regulations of the Max Planck Society*. 2025; Available from: https://openaccess.mpg.de/3544/Positionen.
- 11. University of California. *Open Access Policy for the Academic Senate of the University of California*. UC Systemwide Academic Senate Open Access Policy, 2013 [cited 2025]; Available from: https://osc.universityofcalifornia.edu/scholarly-publishing/uc-open-access-policies-background/systemwide-senate/.
- 12. Office of The Director. Supplemental Guidance to the 2024 NIH Public Access Policy: Government Use License and Rights. 2024 [cited 2025]; NOT-OD-25-049. Available from: https://grants.nih.gov/grants/guide/notice-files/NOT-OD-25-049.html.
- 13. National Institutes of Health. *Revision: Notice of Updated Effective Date for the 2024 NIH Public Access Policy*. 2025 [cited 2025]; NOT-OD-25-101. Available from: https://grants.nih.gov/grants/guide/notice-files/NOT-OD-25-101.html.
- 14. Jay Bhattacharya. Accelerating Access to Research Results: New Implementation Date for the 2024 NIH Public Access Policy. 2025 [cited 2025]; Available from: https://www.nih.gov/about-nih/who-we-are/nih-director/statements/accelerating-access-research-results-new-implementation-date-2024-nih-public-access-policy.
- 15. Dan Pollock Staines and Heather. News & Views: Open Access Charges Price Increases Back on Trend. 2025 [cited 2025]; Available from: https://www.deltathink.com/news-views-open-access-charges-price-increases-back-on-trend.

- 16. DORA. Launch of A Practical Guide to Implementing Responsible Research Assessment. 2025 [cited 2025].
- 17. UC San Diego Library. *Publishing Options and Opportunities: Choosing & Evaluating Journals*. [cited 2025]; Available from: https://ucsd.libguides.com/publishing/choosing-journals.
- 18. Office of The Director. Supplemental Guidance to the 2024 NIH Public Access Policy: Publication Costs. 2024 [cited 2025]; NOT-OD-25-048. Available from: https://grants.nih.gov/grants/guide/notice-files/NOT-OD-25-048.html.
- 19. National Institutes of Health. *Public Access*. 2025 June 23, 2025; Available from: https://grants.nih.gov/policy-and-compliance/policy-topics/public-access.
- 20. National Institute of Health. Request for Information on Maximizing Research Funds by Limiting Allowable Publishing Costs. 2025; Available from: https://grants.nih.gov/grants/quide/notice-files/NOT-OD-25-138.html.
- 21. Jay Bhattacharya. *NIH to Establish New Policies for Allowable Publication Costs*. 2025 July 8, 2025; Statement. Available from: https://www.nih.gov/about-nih/nih-director/statements/nih-establish-new-policies-allowable-publication-costs.
- 22. M. Sharma, A. Sarin, P. Gupta, S. Sachdeva, and A. V. Desai, *Journal impact factor: its use, significance and limitations.* World J Nucl Med, 2014. **13**(2): p. 146.
- 23. Dalmeet Singh Chawla. *What's wrong with the journal impact factor in 5 graphs*. Explainer, 2018 [cited 2025]; Available from: https://www.nature.com/nature-index/news/whats-wrong-with-the-jif-in-five-graphs.